MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdvlem1 Structured version   Unicode version

Theorem pserdvlem1 22947
Description: Lemma for pserdv 22949. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercn.m  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
Assertion
Ref Expression
pserdvlem1  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( abs `  a )  +  M
)  /  2 )  e.  RR+  /\  ( abs `  a )  < 
( ( ( abs `  a )  +  M
)  /  2 )  /\  ( ( ( abs `  a )  +  M )  / 
2 )  <  R
) )
Distinct variable groups:    j, a, n, r, x, y, A   
j, M, y    j, G, r, y    S, a, j, y    F, a    ph, a, j, y
Allowed substitution hints:    ph( x, n, r)    R( x, y, j, n, r, a)    S( x, n, r)    F( x, y, j, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem pserdvlem1
StepHypRef Expression
1 psercn.s . . . . . . . . 9  |-  S  =  ( `' abs " (
0 [,) R ) )
2 cnvimass 5367 . . . . . . . . . 10  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
3 absf 13181 . . . . . . . . . . 11  |-  abs : CC
--> RR
43fdmi 5742 . . . . . . . . . 10  |-  dom  abs  =  CC
52, 4sseqtri 3531 . . . . . . . . 9  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
61, 5eqsstri 3529 . . . . . . . 8  |-  S  C_  CC
76a1i 11 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
87sselda 3499 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  CC )
98abscld 13278 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  RR )
10 pserf.g . . . . . . . 8  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
11 pserf.f . . . . . . . 8  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
12 pserf.a . . . . . . . 8  |-  ( ph  ->  A : NN0 --> CC )
13 pserf.r . . . . . . . 8  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
14 psercn.m . . . . . . . 8  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
1510, 11, 12, 13, 1, 14psercnlem1 22945 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
1615simp1d 1008 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR+ )
1716rpred 11281 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR )
189, 17readdcld 9640 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  +  M )  e.  RR )
19 0red 9614 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  0  e.  RR )
208absge0d 13286 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  0  <_  ( abs `  a
) )
219, 16ltaddrpd 11310 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
( ( abs `  a
)  +  M ) )
2219, 9, 18, 20, 21lelttrd 9757 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  0  <  ( ( abs `  a
)  +  M ) )
2318, 22elrpd 11279 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  +  M )  e.  RR+ )
2423rphalfcld 11293 . 2  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( abs `  a
)  +  M )  /  2 )  e.  RR+ )
2515simp2d 1009 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
M )
26 avglt1 10797 . . . 4  |-  ( ( ( abs `  a
)  e.  RR  /\  M  e.  RR )  ->  ( ( abs `  a
)  <  M  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  M )  /  2 ) ) )
279, 17, 26syl2anc 661 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  <  M  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  M )  /  2 ) ) )
2825, 27mpbid 210 . 2  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
( ( ( abs `  a )  +  M
)  /  2 ) )
2918rehalfcld 10806 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( abs `  a
)  +  M )  /  2 )  e.  RR )
3029rexrd 9660 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( abs `  a
)  +  M )  /  2 )  e. 
RR* )
3117rexrd 9660 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR* )
32 iccssxr 11632 . . . . 5  |-  ( 0 [,] +oo )  C_  RR*
3310, 12, 13radcnvcl 22937 . . . . 5  |-  ( ph  ->  R  e.  ( 0 [,] +oo ) )
3432, 33sseldi 3497 . . . 4  |-  ( ph  ->  R  e.  RR* )
3534adantr 465 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  RR* )
36 avglt2 10798 . . . . 5  |-  ( ( ( abs `  a
)  e.  RR  /\  M  e.  RR )  ->  ( ( abs `  a
)  <  M  <->  ( (
( abs `  a
)  +  M )  /  2 )  < 
M ) )
379, 17, 36syl2anc 661 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  <  M  <->  ( (
( abs `  a
)  +  M )  /  2 )  < 
M ) )
3825, 37mpbid 210 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( abs `  a
)  +  M )  /  2 )  < 
M )
3915simp3d 1010 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  M  <  R )
4030, 31, 35, 38, 39xrlttrd 11387 . 2  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( abs `  a
)  +  M )  /  2 )  < 
R )
4124, 28, 403jca 1176 1  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( abs `  a )  +  M
)  /  2 )  e.  RR+  /\  ( abs `  a )  < 
( ( ( abs `  a )  +  M
)  /  2 )  /\  ( ( ( abs `  a )  +  M )  / 
2 )  <  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   {crab 2811    C_ wss 3471   ifcif 3944   class class class wbr 4456    |-> cmpt 4515   `'ccnv 5007   dom cdm 5008   "cima 5011   -->wf 5590   ` cfv 5594  (class class class)co 6296   supcsup 7918   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514   +oocpnf 9642   RR*cxr 9644    < clt 9645    / cdiv 10227   2c2 10606   NN0cn0 10816   RR+crp 11245   [,)cico 11556   [,]cicc 11557    seqcseq 12109   ^cexp 12168   abscabs 13078    ~~> cli 13318   sum_csu 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-ico 11560  df-icc 11561  df-fz 11698  df-seq 12110  df-exp 12169  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-clim 13322
This theorem is referenced by:  pserdvlem2  22948  pserdv  22949
  Copyright terms: Public domain W3C validator