Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem5 Structured version   Visualization version   GIF version

Theorem poimirlem5 32584
Description: Lemma for poimir 32612 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem9.1 (𝜑𝑇𝑆)
poimirlem5.2 (𝜑 → 0 < (2nd𝑇))
Assertion
Ref Expression
poimirlem5 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem5
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 poimirlem9.1 . . . 4 (𝜑𝑇𝑆)
2 fveq2 6103 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
32breq2d 4595 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
43ifbid 4058 . . . . . . . . . 10 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
54csbeq1d 3506 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
6 fveq2 6103 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (1st𝑡) = (1st𝑇))
76fveq2d 6107 . . . . . . . . . . 11 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
86fveq2d 6107 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
98imaeq1d 5384 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
109xpeq1d 5062 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
118imaeq1d 5384 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
1211xpeq1d 5062 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
1310, 12uneq12d 3730 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
147, 13oveq12d 6567 . . . . . . . . . 10 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
1514csbeq2dv 3944 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
165, 15eqtrd 2644 . . . . . . . 8 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
1716mpteq2dv 4673 . . . . . . 7 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1817eqeq2d 2620 . . . . . 6 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
19 poimirlem22.s . . . . . 6 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
2018, 19elrab2 3333 . . . . 5 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
2120simprbi 479 . . . 4 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
221, 21syl 17 . . 3 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
23 breq1 4586 . . . . . . 7 (𝑦 = 0 → (𝑦 < (2nd𝑇) ↔ 0 < (2nd𝑇)))
24 id 22 . . . . . . 7 (𝑦 = 0 → 𝑦 = 0)
2523, 24ifbieq1d 4059 . . . . . 6 (𝑦 = 0 → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = if(0 < (2nd𝑇), 0, (𝑦 + 1)))
26 poimirlem5.2 . . . . . . 7 (𝜑 → 0 < (2nd𝑇))
2726iftrued 4044 . . . . . 6 (𝜑 → if(0 < (2nd𝑇), 0, (𝑦 + 1)) = 0)
2825, 27sylan9eqr 2666 . . . . 5 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 0)
2928csbeq1d 3506 . . . 4 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 0 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
30 c0ex 9913 . . . . . . 7 0 ∈ V
31 oveq2 6557 . . . . . . . . . . . . 13 (𝑗 = 0 → (1...𝑗) = (1...0))
32 fz10 12233 . . . . . . . . . . . . 13 (1...0) = ∅
3331, 32syl6eq 2660 . . . . . . . . . . . 12 (𝑗 = 0 → (1...𝑗) = ∅)
3433imaeq2d 5385 . . . . . . . . . . 11 (𝑗 = 0 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ ∅))
3534xpeq1d 5062 . . . . . . . . . 10 (𝑗 = 0 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ ∅) × {1}))
36 oveq1 6556 . . . . . . . . . . . . . 14 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
37 0p1e1 11009 . . . . . . . . . . . . . 14 (0 + 1) = 1
3836, 37syl6eq 2660 . . . . . . . . . . . . 13 (𝑗 = 0 → (𝑗 + 1) = 1)
3938oveq1d 6564 . . . . . . . . . . . 12 (𝑗 = 0 → ((𝑗 + 1)...𝑁) = (1...𝑁))
4039imaeq2d 5385 . . . . . . . . . . 11 (𝑗 = 0 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (1...𝑁)))
4140xpeq1d 5062 . . . . . . . . . 10 (𝑗 = 0 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
4235, 41uneq12d 3730 . . . . . . . . 9 (𝑗 = 0 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})))
43 ima0 5400 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑇)) “ ∅) = ∅
4443xpeq1i 5059 . . . . . . . . . . . 12 (((2nd ‘(1st𝑇)) “ ∅) × {1}) = (∅ × {1})
45 0xp 5122 . . . . . . . . . . . 12 (∅ × {1}) = ∅
4644, 45eqtri 2632 . . . . . . . . . . 11 (((2nd ‘(1st𝑇)) “ ∅) × {1}) = ∅
4746uneq1i 3725 . . . . . . . . . 10 ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = (∅ ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
48 uncom 3719 . . . . . . . . . 10 (∅ ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) ∪ ∅)
49 un0 3919 . . . . . . . . . 10 ((((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) ∪ ∅) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})
5047, 48, 493eqtri 2636 . . . . . . . . 9 ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})
5142, 50syl6eq 2660 . . . . . . . 8 (𝑗 = 0 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
5251oveq2d 6565 . . . . . . 7 (𝑗 = 0 → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})))
5330, 52csbie 3525 . . . . . 6 0 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
54 elrabi 3328 . . . . . . . . . . . . . . 15 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
5554, 19eleq2s 2706 . . . . . . . . . . . . . 14 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
561, 55syl 17 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
57 xp1st 7089 . . . . . . . . . . . . 13 (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
59 xp2nd 7090 . . . . . . . . . . . 12 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
6058, 59syl 17 . . . . . . . . . . 11 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
61 fvex 6113 . . . . . . . . . . . 12 (2nd ‘(1st𝑇)) ∈ V
62 f1oeq1 6040 . . . . . . . . . . . 12 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
6361, 62elab 3319 . . . . . . . . . . 11 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
6460, 63sylib 207 . . . . . . . . . 10 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
65 f1ofo 6057 . . . . . . . . . 10 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
6664, 65syl 17 . . . . . . . . 9 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
67 foima 6033 . . . . . . . . 9 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
6866, 67syl 17 . . . . . . . 8 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
6968xpeq1d 5062 . . . . . . 7 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) = ((1...𝑁) × {0}))
7069oveq2d 6565 . . . . . 6 (𝜑 → ((1st ‘(1st𝑇)) ∘𝑓 + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
7153, 70syl5eq 2656 . . . . 5 (𝜑0 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
7271adantr 480 . . . 4 ((𝜑𝑦 = 0) → 0 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
7329, 72eqtrd 2644 . . 3 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
74 poimir.0 . . . . 5 (𝜑𝑁 ∈ ℕ)
75 nnm1nn0 11211 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
7674, 75syl 17 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℕ0)
77 0elfz 12305 . . . 4 ((𝑁 − 1) ∈ ℕ0 → 0 ∈ (0...(𝑁 − 1)))
7876, 77syl 17 . . 3 (𝜑 → 0 ∈ (0...(𝑁 − 1)))
79 ovex 6577 . . . 4 ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})) ∈ V
8079a1i 11 . . 3 (𝜑 → ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})) ∈ V)
8122, 73, 78, 80fvmptd 6197 . 2 (𝜑 → (𝐹‘0) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
82 ovex 6577 . . . 4 (1...𝑁) ∈ V
8382a1i 11 . . 3 (𝜑 → (1...𝑁) ∈ V)
84 xp1st 7089 . . . . 5 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
8558, 84syl 17 . . . 4 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
86 elmapfn 7766 . . . 4 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑇)) Fn (1...𝑁))
8785, 86syl 17 . . 3 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
88 fnconstg 6006 . . . 4 (0 ∈ V → ((1...𝑁) × {0}) Fn (1...𝑁))
8930, 88mp1i 13 . . 3 (𝜑 → ((1...𝑁) × {0}) Fn (1...𝑁))
90 eqidd 2611 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘𝑛))
9130fvconst2 6374 . . . 4 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0)
9291adantl 481 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0)
93 elmapi 7765 . . . . . . . 8 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9485, 93syl 17 . . . . . . 7 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9594ffvelrnda 6267 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
96 elfzonn0 12380 . . . . . 6 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
9795, 96syl 17 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
9897nn0cnd 11230 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
9998addid1d 10115 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) = ((1st ‘(1st𝑇))‘𝑛))
10083, 87, 89, 87, 90, 92, 99offveq 6816 . 2 (𝜑 → ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})) = (1st ‘(1st𝑇)))
10181, 100eqtrd 2644 1 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  {crab 2900  Vcvv 3173  csb 3499  cun 3538  c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  cima 5041   Fn wfn 5799  wf 5800  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  𝑓 cof 6793  1st c1st 7057  2nd c2nd 7058  𝑚 cmap 7744  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cmin 10145  cn 10897  0cn0 11169  ...cfz 12197  ..^cfzo 12334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335
This theorem is referenced by:  poimirlem12  32591  poimirlem14  32593
  Copyright terms: Public domain W3C validator