Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem12 Structured version   Visualization version   GIF version

Theorem poimirlem12 32591
 Description: Lemma for poimir 32612 connecting walks that could yield from a given cube a given face opposite the final vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))
poimirlem12.2 (𝜑𝑇𝑆)
poimirlem12.3 (𝜑 → (2nd𝑇) = 𝑁)
poimirlem12.4 (𝜑𝑈𝑆)
poimirlem12.5 (𝜑 → (2nd𝑈) = 𝑁)
poimirlem12.6 (𝜑𝑀 ∈ (0...(𝑁 − 1)))
Assertion
Ref Expression
poimirlem12 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑀)))
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑀,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝑈,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑀,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑈,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑡,𝑈   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem12
StepHypRef Expression
1 eldif 3550 . . . . . . 7 (𝑦 ∈ (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))) ↔ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
2 imassrn 5396 . . . . . . . . . . . 12 ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ran (2nd ‘(1st𝑇))
3 poimirlem12.2 . . . . . . . . . . . . . . . 16 (𝜑𝑇𝑆)
4 elrabi 3328 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
5 poimirlem22.s . . . . . . . . . . . . . . . . 17 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
64, 5eleq2s 2706 . . . . . . . . . . . . . . . 16 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
7 xp1st 7089 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
83, 6, 73syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
9 xp2nd 7090 . . . . . . . . . . . . . . 15 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
108, 9syl 17 . . . . . . . . . . . . . 14 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
11 fvex 6113 . . . . . . . . . . . . . . 15 (2nd ‘(1st𝑇)) ∈ V
12 f1oeq1 6040 . . . . . . . . . . . . . . 15 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
1311, 12elab 3319 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
1410, 13sylib 207 . . . . . . . . . . . . 13 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
15 f1of 6050 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
16 frn 5966 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁) → ran (2nd ‘(1st𝑇)) ⊆ (1...𝑁))
1714, 15, 163syl 18 . . . . . . . . . . . 12 (𝜑 → ran (2nd ‘(1st𝑇)) ⊆ (1...𝑁))
182, 17syl5ss 3579 . . . . . . . . . . 11 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ (1...𝑁))
19 poimirlem12.4 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑆)
20 elrabi 3328 . . . . . . . . . . . . . . . 16 (𝑈 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
2120, 5eleq2s 2706 . . . . . . . . . . . . . . 15 (𝑈𝑆𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
22 xp1st 7089 . . . . . . . . . . . . . . 15 (𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
2319, 21, 223syl 18 . . . . . . . . . . . . . 14 (𝜑 → (1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
24 xp2nd 7090 . . . . . . . . . . . . . 14 ((1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
2523, 24syl 17 . . . . . . . . . . . . 13 (𝜑 → (2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
26 fvex 6113 . . . . . . . . . . . . . 14 (2nd ‘(1st𝑈)) ∈ V
27 f1oeq1 6040 . . . . . . . . . . . . . 14 (𝑓 = (2nd ‘(1st𝑈)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁)))
2826, 27elab 3319 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
2925, 28sylib 207 . . . . . . . . . . . 12 (𝜑 → (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
30 f1ofo 6057 . . . . . . . . . . . 12 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑈)):(1...𝑁)–onto→(1...𝑁))
31 foima 6033 . . . . . . . . . . . 12 ((2nd ‘(1st𝑈)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑈)) “ (1...𝑁)) = (1...𝑁))
3229, 30, 313syl 18 . . . . . . . . . . 11 (𝜑 → ((2nd ‘(1st𝑈)) “ (1...𝑁)) = (1...𝑁))
3318, 32sseqtr4d 3605 . . . . . . . . . 10 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑁)))
3433ssdifd 3708 . . . . . . . . 9 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))) ⊆ (((2nd ‘(1st𝑈)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
35 dff1o3 6056 . . . . . . . . . . . 12 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑈)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑈))))
3635simprbi 479 . . . . . . . . . . 11 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑈)))
37 imadif 5887 . . . . . . . . . . 11 (Fun (2nd ‘(1st𝑈)) → ((2nd ‘(1st𝑈)) “ ((1...𝑁) ∖ (1...𝑀))) = (((2nd ‘(1st𝑈)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
3829, 36, 373syl 18 . . . . . . . . . 10 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑁) ∖ (1...𝑀))) = (((2nd ‘(1st𝑈)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
39 difun2 4000 . . . . . . . . . . . 12 ((((𝑀 + 1)...𝑁) ∪ (1...𝑀)) ∖ (1...𝑀)) = (((𝑀 + 1)...𝑁) ∖ (1...𝑀))
40 poimirlem12.6 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (0...(𝑁 − 1)))
41 elfznn0 12302 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...(𝑁 − 1)) → 𝑀 ∈ ℕ0)
42 nn0p1nn 11209 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
4340, 41, 423syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 1) ∈ ℕ)
44 nnuz 11599 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
4543, 44syl6eleq 2698 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
46 poimir.0 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
4746nncnd 10913 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
48 npcan1 10334 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
4947, 48syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
50 elfzuz3 12210 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑀))
51 peano2uz 11617 . . . . . . . . . . . . . . . . 17 ((𝑁 − 1) ∈ (ℤ𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ𝑀))
5240, 50, 513syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ𝑀))
5349, 52eqeltrrd 2689 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ𝑀))
54 fzsplit2 12237 . . . . . . . . . . . . . . 15 (((𝑀 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝑀)) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
5545, 53, 54syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
56 uncom 3719 . . . . . . . . . . . . . 14 ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) = (((𝑀 + 1)...𝑁) ∪ (1...𝑀))
5755, 56syl6eq 2660 . . . . . . . . . . . . 13 (𝜑 → (1...𝑁) = (((𝑀 + 1)...𝑁) ∪ (1...𝑀)))
5857difeq1d 3689 . . . . . . . . . . . 12 (𝜑 → ((1...𝑁) ∖ (1...𝑀)) = ((((𝑀 + 1)...𝑁) ∪ (1...𝑀)) ∖ (1...𝑀)))
59 incom 3767 . . . . . . . . . . . . . 14 (((𝑀 + 1)...𝑁) ∩ (1...𝑀)) = ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))
6040, 41syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
6160nn0red 11229 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
6261ltp1d 10833 . . . . . . . . . . . . . . 15 (𝜑𝑀 < (𝑀 + 1))
63 fzdisj 12239 . . . . . . . . . . . . . . 15 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
6462, 63syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
6559, 64syl5eq 2656 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 + 1)...𝑁) ∩ (1...𝑀)) = ∅)
66 disj3 3973 . . . . . . . . . . . . 13 ((((𝑀 + 1)...𝑁) ∩ (1...𝑀)) = ∅ ↔ ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...𝑁) ∖ (1...𝑀)))
6765, 66sylib 207 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...𝑁) ∖ (1...𝑀)))
6839, 58, 673eqtr4a 2670 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ (1...𝑀)) = ((𝑀 + 1)...𝑁))
6968imaeq2d 5385 . . . . . . . . . 10 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑁) ∖ (1...𝑀))) = ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
7038, 69eqtr3d 2646 . . . . . . . . 9 (𝜑 → (((2nd ‘(1st𝑈)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))) = ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
7134, 70sseqtrd 3604 . . . . . . . 8 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))) ⊆ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
7271sselda 3568 . . . . . . 7 ((𝜑𝑦 ∈ (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → 𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
731, 72sylan2br 492 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → 𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
74 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑈 → (2nd𝑡) = (2nd𝑈))
7574breq2d 4595 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑈 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑈)))
7675ifbid 4058 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑈 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)))
7776csbeq1d 3506 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑈if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
78 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑈 → (1st𝑡) = (1st𝑈))
7978fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑈 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑈)))
8078fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑈 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑈)))
8180imaeq1d 5384 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑈 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑈)) “ (1...𝑗)))
8281xpeq1d 5062 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑈 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}))
8380imaeq1d 5384 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑈 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)))
8483xpeq1d 5062 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑈 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))
8582, 84uneq12d 3730 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑈 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))
8679, 85oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑈 → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
8786csbeq2dv 3944 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑈if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
8877, 87eqtrd 2644 . . . . . . . . . . . . . . 15 (𝑡 = 𝑈if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
8988mpteq2dv 4673 . . . . . . . . . . . . . 14 (𝑡 = 𝑈 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
9089eqeq2d 2620 . . . . . . . . . . . . 13 (𝑡 = 𝑈 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
9190, 5elrab2 3333 . . . . . . . . . . . 12 (𝑈𝑆 ↔ (𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
9291simprbi 479 . . . . . . . . . . 11 (𝑈𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
9319, 92syl 17 . . . . . . . . . 10 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
94 breq1 4586 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → (𝑦 < (2nd𝑈) ↔ 𝑀 < (2nd𝑈)))
95 id 22 . . . . . . . . . . . . . 14 (𝑦 = 𝑀𝑦 = 𝑀)
9694, 95ifbieq1d 4059 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) = if(𝑀 < (2nd𝑈), 𝑀, (𝑦 + 1)))
9746nnred 10912 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ)
98 peano2rem 10227 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
9997, 98syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℝ)
100 elfzle2 12216 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1))
10140, 100syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ≤ (𝑁 − 1))
10297ltm1d 10835 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) < 𝑁)
10361, 99, 97, 101, 102lelttrd 10074 . . . . . . . . . . . . . . 15 (𝜑𝑀 < 𝑁)
104 poimirlem12.5 . . . . . . . . . . . . . . 15 (𝜑 → (2nd𝑈) = 𝑁)
105103, 104breqtrrd 4611 . . . . . . . . . . . . . 14 (𝜑𝑀 < (2nd𝑈))
106105iftrued 4044 . . . . . . . . . . . . 13 (𝜑 → if(𝑀 < (2nd𝑈), 𝑀, (𝑦 + 1)) = 𝑀)
10796, 106sylan9eqr 2666 . . . . . . . . . . . 12 ((𝜑𝑦 = 𝑀) → if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) = 𝑀)
108107csbeq1d 3506 . . . . . . . . . . 11 ((𝜑𝑦 = 𝑀) → if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑀 / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
109 oveq2 6557 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑀 → (1...𝑗) = (1...𝑀))
110109imaeq2d 5385 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → ((2nd ‘(1st𝑈)) “ (1...𝑗)) = ((2nd ‘(1st𝑈)) “ (1...𝑀)))
111110xpeq1d 5062 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}))
112 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑀 → (𝑗 + 1) = (𝑀 + 1))
113112oveq1d 6564 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑀 → ((𝑗 + 1)...𝑁) = ((𝑀 + 1)...𝑁))
114113imaeq2d 5385 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → ((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
115114xpeq1d 5062 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))
116111, 115uneq12d 3730 . . . . . . . . . . . . . . 15 (𝑗 = 𝑀 → ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))
117116oveq2d 6565 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
118117adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑀) → ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
11940, 118csbied 3526 . . . . . . . . . . . 12 (𝜑𝑀 / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
120119adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 = 𝑀) → 𝑀 / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
121108, 120eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑦 = 𝑀) → if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
122 ovex 6577 . . . . . . . . . . 11 ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))) ∈ V
123122a1i 11 . . . . . . . . . 10 (𝜑 → ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))) ∈ V)
12493, 121, 40, 123fvmptd 6197 . . . . . . . . 9 (𝜑 → (𝐹𝑀) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
125124fveq1d 6105 . . . . . . . 8 (𝜑 → ((𝐹𝑀)‘𝑦) = (((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦))
126125adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → ((𝐹𝑀)‘𝑦) = (((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦))
127 imassrn 5396 . . . . . . . . . 10 ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) ⊆ ran (2nd ‘(1st𝑈))
128 f1of 6050 . . . . . . . . . . 11 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑈)):(1...𝑁)⟶(1...𝑁))
129 frn 5966 . . . . . . . . . . 11 ((2nd ‘(1st𝑈)):(1...𝑁)⟶(1...𝑁) → ran (2nd ‘(1st𝑈)) ⊆ (1...𝑁))
13029, 128, 1293syl 18 . . . . . . . . . 10 (𝜑 → ran (2nd ‘(1st𝑈)) ⊆ (1...𝑁))
131127, 130syl5ss 3579 . . . . . . . . 9 (𝜑 → ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) ⊆ (1...𝑁))
132131sselda 3568 . . . . . . . 8 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → 𝑦 ∈ (1...𝑁))
133 xp1st 7089 . . . . . . . . . . 11 ((1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
134 elmapfn 7766 . . . . . . . . . . 11 ((1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑈)) Fn (1...𝑁))
13523, 133, 1343syl 18 . . . . . . . . . 10 (𝜑 → (1st ‘(1st𝑈)) Fn (1...𝑁))
136135adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (1st ‘(1st𝑈)) Fn (1...𝑁))
137 1ex 9914 . . . . . . . . . . . . . 14 1 ∈ V
138 fnconstg 6006 . . . . . . . . . . . . . 14 (1 ∈ V → (((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀)))
139137, 138ax-mp 5 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀))
140 c0ex 9913 . . . . . . . . . . . . . 14 0 ∈ V
141 fnconstg 6006 . . . . . . . . . . . . . 14 (0 ∈ V → (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
142140, 141ax-mp 5 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))
143139, 142pm3.2i 470 . . . . . . . . . . . 12 ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
144 imain 5888 . . . . . . . . . . . . . 14 (Fun (2nd ‘(1st𝑈)) → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))))
14529, 36, 1443syl 18 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))))
14664imaeq2d 5385 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ((2nd ‘(1st𝑈)) “ ∅))
147 ima0 5400 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑈)) “ ∅) = ∅
148146, 147syl6eq 2660 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ∅)
149145, 148eqtr3d 2646 . . . . . . . . . . . 12 (𝜑 → (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = ∅)
150 fnun 5911 . . . . . . . . . . . 12 ((((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ∧ (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))))
151143, 149, 150sylancr 694 . . . . . . . . . . 11 (𝜑 → ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))))
152 imaundi 5464 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
15355imaeq2d 5385 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑈)) “ (1...𝑁)) = ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))))
154153, 32eqtr3d 2646 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) = (1...𝑁))
155152, 154syl5eqr 2658 . . . . . . . . . . . 12 (𝜑 → (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = (1...𝑁))
156155fneq2d 5896 . . . . . . . . . . 11 (𝜑 → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁)))
157151, 156mpbid 221 . . . . . . . . . 10 (𝜑 → ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
158157adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
159 ovex 6577 . . . . . . . . . 10 (1...𝑁) ∈ V
160159a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (1...𝑁) ∈ V)
161 inidm 3784 . . . . . . . . 9 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
162 eqidd 2611 . . . . . . . . 9 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ∧ 𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑈))‘𝑦) = ((1st ‘(1st𝑈))‘𝑦))
163 fvun2 6180 . . . . . . . . . . . . 13 (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦))
164139, 142, 163mp3an12 1406 . . . . . . . . . . . 12 (((((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦))
165149, 164sylan 487 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦))
166140fvconst2 6374 . . . . . . . . . . . 12 (𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) → ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦) = 0)
167166adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦) = 0)
168165, 167eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = 0)
169168adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ∧ 𝑦 ∈ (1...𝑁)) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = 0)
170136, 158, 160, 160, 161, 162, 169ofval 6804 . . . . . . . 8 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ∧ 𝑦 ∈ (1...𝑁)) → (((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦) = (((1st ‘(1st𝑈))‘𝑦) + 0))
171132, 170mpdan 699 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦) = (((1st ‘(1st𝑈))‘𝑦) + 0))
172 elmapi 7765 . . . . . . . . . . . . 13 ((1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾))
17323, 133, 1723syl 18 . . . . . . . . . . . 12 (𝜑 → (1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾))
174173ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑈))‘𝑦) ∈ (0..^𝐾))
175 elfzonn0 12380 . . . . . . . . . . 11 (((1st ‘(1st𝑈))‘𝑦) ∈ (0..^𝐾) → ((1st ‘(1st𝑈))‘𝑦) ∈ ℕ0)
176174, 175syl 17 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑈))‘𝑦) ∈ ℕ0)
177176nn0cnd 11230 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑈))‘𝑦) ∈ ℂ)
178177addid1d 10115 . . . . . . . 8 ((𝜑𝑦 ∈ (1...𝑁)) → (((1st ‘(1st𝑈))‘𝑦) + 0) = ((1st ‘(1st𝑈))‘𝑦))
179132, 178syldan 486 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((1st ‘(1st𝑈))‘𝑦) + 0) = ((1st ‘(1st𝑈))‘𝑦))
180126, 171, 1793eqtrd 2648 . . . . . 6 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → ((𝐹𝑀)‘𝑦) = ((1st ‘(1st𝑈))‘𝑦))
18173, 180syldan 486 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → ((𝐹𝑀)‘𝑦) = ((1st ‘(1st𝑈))‘𝑦))
182 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
183182breq2d 4595 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
184183ifbid 4058 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
185184csbeq1d 3506 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
186 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → (1st𝑡) = (1st𝑇))
187186fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
188186fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
189188imaeq1d 5384 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
190189xpeq1d 5062 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
191188imaeq1d 5384 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
192191xpeq1d 5062 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
193190, 192uneq12d 3730 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
194187, 193oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
195194csbeq2dv 3944 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
196185, 195eqtrd 2644 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
197196mpteq2dv 4673 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
198197eqeq2d 2620 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
199198, 5elrab2 3333 . . . . . . . . . . . 12 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
200199simprbi 479 . . . . . . . . . . 11 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2013, 200syl 17 . . . . . . . . . 10 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
202 breq1 4586 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → (𝑦 < (2nd𝑇) ↔ 𝑀 < (2nd𝑇)))
203202, 95ifbieq1d 4059 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = if(𝑀 < (2nd𝑇), 𝑀, (𝑦 + 1)))
204 poimirlem12.3 . . . . . . . . . . . . . . 15 (𝜑 → (2nd𝑇) = 𝑁)
205103, 204breqtrrd 4611 . . . . . . . . . . . . . 14 (𝜑𝑀 < (2nd𝑇))
206205iftrued 4044 . . . . . . . . . . . . 13 (𝜑 → if(𝑀 < (2nd𝑇), 𝑀, (𝑦 + 1)) = 𝑀)
207203, 206sylan9eqr 2666 . . . . . . . . . . . 12 ((𝜑𝑦 = 𝑀) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 𝑀)
208207csbeq1d 3506 . . . . . . . . . . 11 ((𝜑𝑦 = 𝑀) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑀 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
209109imaeq2d 5385 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑀)))
210209xpeq1d 5062 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}))
211113imaeq2d 5385 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
212211xpeq1d 5062 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))
213210, 212uneq12d 3730 . . . . . . . . . . . . . . 15 (𝑗 = 𝑀 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))
214213oveq2d 6565 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
215214adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑀) → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
21640, 215csbied 3526 . . . . . . . . . . . 12 (𝜑𝑀 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
217216adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 = 𝑀) → 𝑀 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
218208, 217eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑦 = 𝑀) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
219 ovex 6577 . . . . . . . . . . 11 ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))) ∈ V
220219a1i 11 . . . . . . . . . 10 (𝜑 → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))) ∈ V)
221201, 218, 40, 220fvmptd 6197 . . . . . . . . 9 (𝜑 → (𝐹𝑀) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
222221fveq1d 6105 . . . . . . . 8 (𝜑 → ((𝐹𝑀)‘𝑦) = (((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦))
223222adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ((𝐹𝑀)‘𝑦) = (((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦))
22418sselda 3568 . . . . . . . 8 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → 𝑦 ∈ (1...𝑁))
225 xp1st 7089 . . . . . . . . . . 11 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
226 elmapfn 7766 . . . . . . . . . . 11 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑇)) Fn (1...𝑁))
2278, 225, 2263syl 18 . . . . . . . . . 10 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
228227adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (1st ‘(1st𝑇)) Fn (1...𝑁))
229 fnconstg 6006 . . . . . . . . . . . . . 14 (1 ∈ V → (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)))
230137, 229ax-mp 5 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀))
231 fnconstg 6006 . . . . . . . . . . . . . 14 (0 ∈ V → (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
232140, 231ax-mp 5 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))
233230, 232pm3.2i 470 . . . . . . . . . . . 12 ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
234 dff1o3 6056 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑇))))
235234simprbi 479 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑇)))
236 imain 5888 . . . . . . . . . . . . . 14 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
23714, 235, 2363syl 18 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
23864imaeq2d 5385 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
239 ima0 5400 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑇)) “ ∅) = ∅
240238, 239syl6eq 2660 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ∅)
241237, 240eqtr3d 2646 . . . . . . . . . . . 12 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅)
242 fnun 5911 . . . . . . . . . . . 12 ((((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
243233, 241, 242sylancr 694 . . . . . . . . . . 11 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
244 imaundi 5464 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
24555imaeq2d 5385 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))))
246 f1ofo 6057 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
247 foima 6033 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
24814, 246, 2473syl 18 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
249245, 248eqtr3d 2646 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) = (1...𝑁))
250244, 249syl5eqr 2658 . . . . . . . . . . . 12 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = (1...𝑁))
251250fneq2d 5896 . . . . . . . . . . 11 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁)))
252243, 251mpbid 221 . . . . . . . . . 10 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
253252adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
254159a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (1...𝑁) ∈ V)
255 eqidd 2611 . . . . . . . . 9 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) ∧ 𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) = ((1st ‘(1st𝑇))‘𝑦))
256 fvun1 6179 . . . . . . . . . . . . 13 (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ 𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦))
257230, 232, 256mp3an12 1406 . . . . . . . . . . . 12 (((((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ 𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦))
258241, 257sylan 487 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦))
259137fvconst2 6374 . . . . . . . . . . . 12 (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦) = 1)
260259adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦) = 1)
261258, 260eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = 1)
262261adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) ∧ 𝑦 ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = 1)
263228, 253, 254, 254, 161, 255, 262ofval 6804 . . . . . . . 8 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) ∧ 𝑦 ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦) = (((1st ‘(1st𝑇))‘𝑦) + 1))
264224, 263mpdan 699 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦) = (((1st ‘(1st𝑇))‘𝑦) + 1))
265223, 264eqtrd 2644 . . . . . 6 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ((𝐹𝑀)‘𝑦) = (((1st ‘(1st𝑇))‘𝑦) + 1))
266265adantrr 749 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → ((𝐹𝑀)‘𝑦) = (((1st ‘(1st𝑇))‘𝑦) + 1))
26746nngt0d 10941 . . . . . . . . . 10 (𝜑 → 0 < 𝑁)
268267, 104breqtrrd 4611 . . . . . . . . 9 (𝜑 → 0 < (2nd𝑈))
26946, 5, 19, 268poimirlem5 32584 . . . . . . . 8 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑈)))
270267, 204breqtrrd 4611 . . . . . . . . 9 (𝜑 → 0 < (2nd𝑇))
27146, 5, 3, 270poimirlem5 32584 . . . . . . . 8 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
272269, 271eqtr3d 2646 . . . . . . 7 (𝜑 → (1st ‘(1st𝑈)) = (1st ‘(1st𝑇)))
273272fveq1d 6105 . . . . . 6 (𝜑 → ((1st ‘(1st𝑈))‘𝑦) = ((1st ‘(1st𝑇))‘𝑦))
274273adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → ((1st ‘(1st𝑈))‘𝑦) = ((1st ‘(1st𝑇))‘𝑦))
275181, 266, 2743eqtr3d 2652 . . . 4 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → (((1st ‘(1st𝑇))‘𝑦) + 1) = ((1st ‘(1st𝑇))‘𝑦))
276 elmapi 7765 . . . . . . . . . . . 12 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
2778, 225, 2763syl 18 . . . . . . . . . . 11 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
278277ffvelrnda 6267 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) ∈ (0..^𝐾))
279 elfzonn0 12380 . . . . . . . . . 10 (((1st ‘(1st𝑇))‘𝑦) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑦) ∈ ℕ0)
280278, 279syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) ∈ ℕ0)
281280nn0red 11229 . . . . . . . 8 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) ∈ ℝ)
282281ltp1d 10833 . . . . . . . 8 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) < (((1st ‘(1st𝑇))‘𝑦) + 1))
283281, 282gtned 10051 . . . . . . 7 ((𝜑𝑦 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑦) + 1) ≠ ((1st ‘(1st𝑇))‘𝑦))
284224, 283syldan 486 . . . . . 6 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((1st ‘(1st𝑇))‘𝑦) + 1) ≠ ((1st ‘(1st𝑇))‘𝑦))
285284neneqd 2787 . . . . 5 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ¬ (((1st ‘(1st𝑇))‘𝑦) + 1) = ((1st ‘(1st𝑇))‘𝑦))
286285adantrr 749 . . . 4 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → ¬ (((1st ‘(1st𝑇))‘𝑦) + 1) = ((1st ‘(1st𝑇))‘𝑦))
287275, 286pm2.65da 598 . . 3 (𝜑 → ¬ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
288 iman 439 . . 3 ((𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) → 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))) ↔ ¬ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
289287, 288sylibr 223 . 2 (𝜑 → (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) → 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
290289ssrdv 3574 1 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑀)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596   ≠ wne 2780  {crab 2900  Vcvv 3173  ⦋csb 3499   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  ◡ccnv 5037  ran crn 5039   “ cima 5041  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  –onto→wfo 5802  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793  1st c1st 7057  2nd c2nd 7058   ↑𝑚 cmap 7744  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145  ℕcn 10897  ℕ0cn0 11169  ℤ≥cuz 11563  ...cfz 12197  ..^cfzo 12334 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335 This theorem is referenced by:  poimirlem14  32593
 Copyright terms: Public domain W3C validator