Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1grplem Structured version   Visualization version   GIF version

Theorem pi1grplem 22657
 Description: Lemma for pi1grp 22658. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1fval.g 𝐺 = (𝐽 π1 𝑌)
pi1fval.b 𝐵 = (Base‘𝐺)
pi1fval.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1fval.4 (𝜑𝑌𝑋)
pi1grplem.z 0 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pi1grplem (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))

Proof of Theorem pi1grplem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1fval.g . . . . 5 𝐺 = (𝐽 π1 𝑌)
2 pi1fval.3 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 pi1fval.4 . . . . 5 (𝜑𝑌𝑋)
4 eqid 2610 . . . . 5 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
51, 2, 3, 4pi1val 22645 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
6 pi1fval.b . . . . . 6 𝐵 = (Base‘𝐺)
76a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝐺))
8 eqidd 2611 . . . . 5 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
91, 2, 3, 4, 7, 8pi1buni 22648 . . . 4 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
10 fvex 6113 . . . . 5 ( ≃ph𝐽) ∈ V
1110a1i 11 . . . 4 (𝜑 → ( ≃ph𝐽) ∈ V)
12 ovex 6577 . . . . 5 (𝐽 Ω1 𝑌) ∈ V
1312a1i 11 . . . 4 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
141, 2, 3, 4, 7, 9pi1blem 22647 . . . . 5 (𝜑 → ((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵 𝐵 ⊆ (II Cn 𝐽)))
1514simpld 474 . . . 4 (𝜑 → (( ≃ph𝐽) “ 𝐵) ⊆ 𝐵)
165, 9, 11, 13, 15qusin 16027 . . 3 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
174, 2, 3om1plusg 22642 . . 3 (𝜑 → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
18 phtpcer 22602 . . . . 5 ( ≃ph𝐽) Er (II Cn 𝐽)
1918a1i 11 . . . 4 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
2014simprd 478 . . . 4 (𝜑 𝐵 ⊆ (II Cn 𝐽))
2119, 20erinxp 7708 . . 3 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
22 eqid 2610 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
23 eqid 2610 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
241, 2, 3, 7, 22, 4, 23pi1cpbl 22652 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2517oveqd 6566 . . . . 5 (𝜑 → (𝑎(*𝑝𝐽)𝑏) = (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏))
2617oveqd 6566 . . . . 5 (𝜑 → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
2725, 26breq12d 4596 . . . 4 (𝜑 → ((𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑) ↔ (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2824, 27sylibrd 248 . . 3 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑)))
2923ad2ant1 1075 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
3033ad2ant1 1075 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑌𝑋)
3193ad2ant1 1075 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
32 simp2 1055 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑥 𝐵)
33 simp3 1056 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑦 𝐵)
344, 29, 30, 31, 32, 33om1addcl 22641 . . 3 ((𝜑𝑥 𝐵𝑦 𝐵) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
352adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
363adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑌𝑋)
379adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
38343adant3r3 1268 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
39 simpr3 1062 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 𝐵)
404, 35, 36, 37, 38, 39om1addcl 22641 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵)
41 simpr1 1060 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 𝐵)
42 simpr2 1061 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 𝐵)
434, 35, 36, 37, 42, 39om1addcl 22641 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦(*𝑝𝐽)𝑧) ∈ 𝐵)
444, 35, 36, 37, 41, 43om1addcl 22641 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵)
451, 2, 3, 7pi1eluni 22650 . . . . . . . 8 (𝜑 → (𝑥 𝐵 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
4645biimpa 500 . . . . . . 7 ((𝜑𝑥 𝐵) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
47463ad2antr1 1219 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
4847simp1d 1066 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 ∈ (II Cn 𝐽))
496a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘𝐺))
501, 35, 36, 49pi1eluni 22650 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 𝐵 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
5142, 50mpbid 221 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
5251simp1d 1066 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 ∈ (II Cn 𝐽))
531, 35, 36, 49pi1eluni 22650 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 𝐵 ↔ (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌)))
5439, 53mpbid 221 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌))
5554simp1d 1066 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 ∈ (II Cn 𝐽))
5647simp3d 1068 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = 𝑌)
5751simp2d 1067 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘0) = 𝑌)
5856, 57eqtr4d 2647 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = (𝑦‘0))
5951simp3d 1068 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = 𝑌)
6054simp2d 1067 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧‘0) = 𝑌)
6159, 60eqtr4d 2647 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = (𝑧‘0))
62 eqid 2610 . . . . 5 (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) = (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2))))
6348, 52, 55, 58, 61, 62pcoass 22632 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
64 brinxp2 5103 . . . 4 (((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ↔ (((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵 ∧ (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵 ∧ ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧))))
6540, 44, 63, 64syl3anbrc 1239 . . 3 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
66 pi1grplem.z . . . . . 6 0 = ((0[,]1) × {𝑌})
6766pcoptcl 22629 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
682, 3, 67syl2anc 691 . . . 4 (𝜑 → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
691, 2, 3, 7pi1eluni 22650 . . . 4 (𝜑 → ( 0 𝐵 ↔ ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌)))
7068, 69mpbird 246 . . 3 (𝜑0 𝐵)
712adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
723adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 𝑌𝑋)
739adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
7470adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 0 𝐵)
75 simpr 476 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 𝐵)
764, 71, 72, 73, 74, 75om1addcl 22641 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥) ∈ 𝐵)
7720sselda 3568 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 ∈ (II Cn 𝐽))
7846simp2d 1067 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘0) = 𝑌)
7966pcopt 22630 . . . . 5 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
8077, 78, 79syl2anc 691 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
81 brinxp2 5103 . . . 4 (( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥 ↔ (( 0 (*𝑝𝐽)𝑥) ∈ 𝐵𝑥 𝐵 ∧ ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥))
8276, 75, 80, 81syl3anbrc 1239 . . 3 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥)
83 eqid 2610 . . . . . . 7 (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) = (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))
8483pcorevcl 22633 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8577, 84syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8685simp1d 1066 . . . 4 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽))
8785simp2d 1067 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1))
8846simp3d 1068 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘1) = 𝑌)
8987, 88eqtrd 2644 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌)
9085simp3d 1068 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0))
9190, 78eqtrd 2644 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)
921, 2, 3, 7pi1eluni 22650 . . . . 5 (𝜑 → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9392adantr 480 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9486, 89, 91, 93mpbir3and 1238 . . 3 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵)
954, 71, 72, 73, 94, 75om1addcl 22641 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵)
96 eqid 2610 . . . . . . 7 ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {(𝑥‘1)})
9783, 96pcorev 22635 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9877, 97syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9988sneqd 4137 . . . . . . 7 ((𝜑𝑥 𝐵) → {(𝑥‘1)} = {𝑌})
10099xpeq2d 5063 . . . . . 6 ((𝜑𝑥 𝐵) → ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {𝑌}))
101100, 66syl6reqr 2663 . . . . 5 ((𝜑𝑥 𝐵) → 0 = ((0[,]1) × {(𝑥‘1)}))
10298, 101breqtrrd 4611 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 )
103 brinxp2 5103 . . . 4 (((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 ↔ (((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵0 𝐵 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 ))
10495, 74, 102, 103syl3anbrc 1239 . . 3 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 )
10516, 9, 17, 21, 13, 28, 34, 65, 70, 82, 94, 104qusgrp2 17356 . 2 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
106 ecinxp 7709 . . . . 5 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵0 𝐵) → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
10715, 70, 106syl2anc 691 . . . 4 (𝜑 → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
108107eqeq1d 2612 . . 3 (𝜑 → ([ 0 ]( ≃ph𝐽) = (0g𝐺) ↔ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
109108anbi2d 736 . 2 (𝜑 → ((𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)) ↔ (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺))))
110105, 109mpbird 246 1 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ifcif 4036  {csn 4125  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036   “ cima 5041  ‘cfv 5804  (class class class)co 6549   Er wer 7626  [cec 7627  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   ≤ cle 9954   − cmin 10145   / cdiv 10563  2c2 10947  4c4 10949  [,]cicc 12049  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  TopOnctopon 20518   Cn ccn 20838  IIcii 22486   ≃phcphtpc 22576  *𝑝cpco 22608   Ω1 comi 22609   π1 cpi1 22611 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-qus 15992  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-htpy 22577  df-phtpy 22578  df-phtpc 22599  df-pco 22613  df-om1 22614  df-pi1 22616 This theorem is referenced by:  pi1grp  22658  pi1id  22659  pi1inv  22660
 Copyright terms: Public domain W3C validator