Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1blem Structured version   Visualization version   GIF version

Theorem pi1blem 22647
 Description: Lemma for pi1buni 22648. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1val.o 𝑂 = (𝐽 Ω1 𝑌)
pi1bas.b (𝜑𝐵 = (Base‘𝐺))
pi1bas.k (𝜑𝐾 = (Base‘𝑂))
Assertion
Ref Expression
pi1blem (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))

Proof of Theorem pi1blem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . 5 𝑥 ∈ V
21elima 5390 . . . 4 (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) ↔ ∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥)
3 simpr 476 . . . . . . . . 9 ((𝜑𝑦( ≃ph𝐽)𝑥) → 𝑦( ≃ph𝐽)𝑥)
4 isphtpc 22601 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
53, 4sylib 207 . . . . . . . 8 ((𝜑𝑦( ≃ph𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
65adantrl 748 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
76simp2d 1067 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽))
8 phtpc01 22604 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
98ad2antll 761 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
109simpld 474 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0))
11 pi1val.o . . . . . . . . . . 11 𝑂 = (𝐽 Ω1 𝑌)
12 pi1val.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
13 pi1val.2 . . . . . . . . . . 11 (𝜑𝑌𝑋)
14 pi1bas.k . . . . . . . . . . 11 (𝜑𝐾 = (Base‘𝑂))
1511, 12, 13, 14om1elbas 22640 . . . . . . . . . 10 (𝜑 → (𝑦𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
1615biimpa 500 . . . . . . . . 9 ((𝜑𝑦𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1716adantrr 749 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1817simp2d 1067 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = 𝑌)
1910, 18eqtr3d 2646 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘0) = 𝑌)
209simprd 478 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1))
2117simp3d 1068 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = 𝑌)
2220, 21eqtr3d 2646 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘1) = 𝑌)
2311, 12, 13, 14om1elbas 22640 . . . . . . 7 (𝜑 → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
2423adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
257, 19, 22, 24mpbir3and 1238 . . . . 5 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥𝐾)
2625rexlimdvaa 3014 . . . 4 (𝜑 → (∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥𝑥𝐾))
272, 26syl5bi 231 . . 3 (𝜑 → (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) → 𝑥𝐾))
2827ssrdv 3574 . 2 (𝜑 → (( ≃ph𝐽) “ 𝐾) ⊆ 𝐾)
29 simp1 1054 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽))
3023, 29syl6bi 242 . . 3 (𝜑 → (𝑥𝐾𝑥 ∈ (II Cn 𝐽)))
3130ssrdv 3574 . 2 (𝜑𝐾 ⊆ (II Cn 𝐽))
3228, 31jca 553 1 (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583   “ cima 5041  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  Basecbs 15695  TopOnctopon 20518   Cn ccn 20838  IIcii 22486  PHtpycphtpy 22575   ≃phcphtpc 22576   Ω1 comi 22609   π1 cpi1 22611 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-tset 15787  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-ii 22488  df-htpy 22577  df-phtpy 22578  df-phtpc 22599  df-om1 22614 This theorem is referenced by:  pi1buni  22648  pi1bas3  22651  pi1addf  22655  pi1addval  22656  pi1grplem  22657
 Copyright terms: Public domain W3C validator