Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1elbas Structured version   Visualization version   GIF version

Theorem om1elbas 22640
 Description: Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1bas.o 𝑂 = (𝐽 Ω1 𝑌)
om1bas.j (𝜑𝐽 ∈ (TopOn‘𝑋))
om1bas.y (𝜑𝑌𝑋)
om1bas.b (𝜑𝐵 = (Base‘𝑂))
Assertion
Ref Expression
om1elbas (𝜑 → (𝐹𝐵 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)))

Proof of Theorem om1elbas
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 om1bas.o . . . 4 𝑂 = (𝐽 Ω1 𝑌)
2 om1bas.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 om1bas.y . . . 4 (𝜑𝑌𝑋)
4 om1bas.b . . . 4 (𝜑𝐵 = (Base‘𝑂))
51, 2, 3, 4om1bas 22639 . . 3 (𝜑𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
65eleq2d 2673 . 2 (𝜑 → (𝐹𝐵𝐹 ∈ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}))
7 fveq1 6102 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0))
87eqeq1d 2612 . . . . 5 (𝑓 = 𝐹 → ((𝑓‘0) = 𝑌 ↔ (𝐹‘0) = 𝑌))
9 fveq1 6102 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1))
109eqeq1d 2612 . . . . 5 (𝑓 = 𝐹 → ((𝑓‘1) = 𝑌 ↔ (𝐹‘1) = 𝑌))
118, 10anbi12d 743 . . . 4 (𝑓 = 𝐹 → (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ↔ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)))
1211elrab 3331 . . 3 (𝐹 ∈ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ↔ (𝐹 ∈ (II Cn 𝐽) ∧ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)))
13 3anass 1035 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)))
1412, 13bitr4i 266 . 2 (𝐹 ∈ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))
156, 14syl6bb 275 1 (𝜑 → (𝐹𝐵 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  Basecbs 15695  TopOnctopon 20518   Cn ccn 20838  IIcii 22486   Ω1 comi 22609 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-tset 15787  df-topon 20523  df-om1 22614 This theorem is referenced by:  om1addcl  22641  pi1blem  22647  pi1eluni  22650
 Copyright terms: Public domain W3C validator