MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1blem Structured version   Unicode version

Theorem pi1blem 21405
Description: Lemma for pi1buni 21406. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g  |-  G  =  ( J  pi1  Y )
pi1val.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1val.2  |-  ( ph  ->  Y  e.  X )
pi1val.o  |-  O  =  ( J  Om1  Y )
pi1bas.b  |-  ( ph  ->  B  =  ( Base `  G ) )
pi1bas.k  |-  ( ph  ->  K  =  ( Base `  O ) )
Assertion
Ref Expression
pi1blem  |-  ( ph  ->  ( ( (  ~=ph  `  J ) " K
)  C_  K  /\  K  C_  ( II  Cn  J ) ) )

Proof of Theorem pi1blem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3121 . . . . 5  |-  x  e. 
_V
21elima 5348 . . . 4  |-  ( x  e.  ( (  ~=ph  `  J ) " K
)  <->  E. y  e.  K  y (  ~=ph  `  J
) x )
3 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  y (  ~=ph  `  J ) x )  ->  y (  ~=ph  `  J ) x )
4 isphtpc 21360 . . . . . . . . 9  |-  ( y (  ~=ph  `  J ) x  <->  ( y  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( y
( PHtpy `  J )
x )  =/=  (/) ) )
53, 4sylib 196 . . . . . . . 8  |-  ( (
ph  /\  y (  ~=ph  `  J ) x )  ->  ( y  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( y
( PHtpy `  J )
x )  =/=  (/) ) )
65adantrl 715 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( y  e.  ( II  Cn  J )  /\  x  e.  ( II  Cn  J )  /\  ( y (
PHtpy `  J ) x )  =/=  (/) ) )
76simp2d 1009 . . . . . 6  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  ->  x  e.  ( II  Cn  J ) )
8 phtpc01 21362 . . . . . . . . 9  |-  ( y (  ~=ph  `  J ) x  ->  ( (
y `  0 )  =  ( x ` 
0 )  /\  (
y `  1 )  =  ( x ` 
1 ) ) )
98ad2antll 728 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( ( y ` 
0 )  =  ( x `  0 )  /\  ( y ` 
1 )  =  ( x `  1 ) ) )
109simpld 459 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( y `  0
)  =  ( x `
 0 ) )
11 pi1val.o . . . . . . . . . . 11  |-  O  =  ( J  Om1  Y )
12 pi1val.1 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  X ) )
13 pi1val.2 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  X )
14 pi1bas.k . . . . . . . . . . 11  |-  ( ph  ->  K  =  ( Base `  O ) )
1511, 12, 13, 14om1elbas 21398 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  K  <->  ( y  e.  ( II 
Cn  J )  /\  ( y `  0
)  =  Y  /\  ( y `  1
)  =  Y ) ) )
1615biimpa 484 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  (
y  e.  ( II 
Cn  J )  /\  ( y `  0
)  =  Y  /\  ( y `  1
)  =  Y ) )
1716adantrr 716 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( y  e.  ( II  Cn  J )  /\  ( y ` 
0 )  =  Y  /\  ( y ` 
1 )  =  Y ) )
1817simp2d 1009 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( y `  0
)  =  Y )
1910, 18eqtr3d 2510 . . . . . 6  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( x `  0
)  =  Y )
209simprd 463 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( y `  1
)  =  ( x `
 1 ) )
2117simp3d 1010 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( y `  1
)  =  Y )
2220, 21eqtr3d 2510 . . . . . 6  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( x `  1
)  =  Y )
2311, 12, 13, 14om1elbas 21398 . . . . . . 7  |-  ( ph  ->  ( x  e.  K  <->  ( x  e.  ( II 
Cn  J )  /\  ( x `  0
)  =  Y  /\  ( x `  1
)  =  Y ) ) )
2423adantr 465 . . . . . 6  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  -> 
( x  e.  K  <->  ( x  e.  ( II 
Cn  J )  /\  ( x `  0
)  =  Y  /\  ( x `  1
)  =  Y ) ) )
257, 19, 22, 24mpbir3and 1179 . . . . 5  |-  ( (
ph  /\  ( y  e.  K  /\  y
(  ~=ph  `  J )
x ) )  ->  x  e.  K )
2625rexlimdvaa 2960 . . . 4  |-  ( ph  ->  ( E. y  e.  K  y (  ~=ph  `  J ) x  ->  x  e.  K )
)
272, 26syl5bi 217 . . 3  |-  ( ph  ->  ( x  e.  ( (  ~=ph  `  J )
" K )  ->  x  e.  K )
)
2827ssrdv 3515 . 2  |-  ( ph  ->  ( (  ~=ph  `  J
) " K ) 
C_  K )
29 simp1 996 . . . 4  |-  ( ( x  e.  ( II 
Cn  J )  /\  ( x `  0
)  =  Y  /\  ( x `  1
)  =  Y )  ->  x  e.  ( II  Cn  J ) )
3023, 29syl6bi 228 . . 3  |-  ( ph  ->  ( x  e.  K  ->  x  e.  ( II 
Cn  J ) ) )
3130ssrdv 3515 . 2  |-  ( ph  ->  K  C_  ( II  Cn  J ) )
3228, 31jca 532 1  |-  ( ph  ->  ( ( (  ~=ph  `  J ) " K
)  C_  K  /\  K  C_  ( II  Cn  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2818    C_ wss 3481   (/)c0 3790   class class class wbr 4453   "cima 5008   ` cfv 5594  (class class class)co 6295   0cc0 9504   1c1 9505   Basecbs 14506  TopOnctopon 19262    Cn ccn 19591   IIcii 21245   PHtpycphtpy 21334    ~=ph cphtpc 21335    Om1 comi 21367    pi1 cpi1 21369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-icc 11548  df-fz 11685  df-seq 12088  df-exp 12147  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-plusg 14584  df-tset 14590  df-topgen 14715  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-top 19266  df-bases 19268  df-topon 19269  df-cn 19594  df-ii 21247  df-htpy 21336  df-phtpy 21337  df-phtpc 21358  df-om1 21372
This theorem is referenced by:  pi1buni  21406  pi1bas3  21409  pi1addf  21413  pi1addval  21414  pi1grplem  21415
  Copyright terms: Public domain W3C validator