Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrex Structured version   Visualization version   GIF version

Theorem pellqrex 36461
Description: There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellqrex (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Distinct variable group:   𝑥,𝐷

Proof of Theorem pellqrex
Dummy variables 𝑎 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3694 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
2 eldifn 3695 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ 𝐷 ∈ ◻NN)
31anim1i 590 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
4 fveq2 6103 . . . . . . 7 (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷))
54eleq1d 2672 . . . . . 6 (𝑎 = 𝐷 → ((√‘𝑎) ∈ ℚ ↔ (√‘𝐷) ∈ ℚ))
6 df-squarenn 36423 . . . . . 6 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
75, 6elrab2 3333 . . . . 5 (𝐷 ∈ ◻NN ↔ (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
83, 7sylibr 223 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → 𝐷 ∈ ◻NN)
92, 8mtand 689 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ (√‘𝐷) ∈ ℚ)
10 pellex 36417 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
111, 9, 10syl2anc 691 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
12 simpll 786 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝐷 ∈ (ℕ ∖ ◻NN))
13 nnnn0 11176 . . . . . . . 8 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
1413adantr 480 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑐 ∈ ℕ0)
1514ad2antlr 759 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑐 ∈ ℕ0)
16 nnnn0 11176 . . . . . . . 8 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
1716adantl 481 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0)
1817ad2antlr 759 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑑 ∈ ℕ0)
19 simpr 476 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
20 pellqrexplicit 36459 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
2112, 15, 18, 19, 20syl31anc 1321 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
22 1re 9918 . . . . . . . 8 1 ∈ ℝ
2322a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ∈ ℝ)
2422, 22readdcli 9932 . . . . . . . 8 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ∈ ℝ)
26 nnre 10904 . . . . . . . . 9 (𝑐 ∈ ℕ → 𝑐 ∈ ℝ)
2726ad2antrl 760 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑐 ∈ ℝ)
281adantr 480 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℕ)
2928nnrpd 11746 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℝ+)
3029rpsqrtcld 13998 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ+)
3130rpred 11748 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ)
32 nnre 10904 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
3332ad2antll 761 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑑 ∈ ℝ)
3431, 33remulcld 9949 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((√‘𝐷) · 𝑑) ∈ ℝ)
3527, 34readdcld 9948 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ ℝ)
3622ltp1i 10806 . . . . . . . 8 1 < (1 + 1)
3736a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (1 + 1))
38 nnge1 10923 . . . . . . . . 9 (𝑐 ∈ ℕ → 1 ≤ 𝑐)
3938ad2antrl 760 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑐)
40 1t1e1 11052 . . . . . . . . 9 (1 · 1) = 1
41 nnge1 10923 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ≤ 𝐷)
42 sq1 12820 . . . . . . . . . . . . . 14 (1↑2) = 1
4342a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (1↑2) = 1)
44 nncn 10905 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
4544sqsqrtd 14026 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → ((√‘𝐷)↑2) = 𝐷)
4641, 43, 453brtr4d 4615 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1↑2) ≤ ((√‘𝐷)↑2))
4722a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ∈ ℝ)
48 nnrp 11718 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
4948rpsqrtcld 13998 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ+)
5049rpred 11748 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ)
51 0le1 10430 . . . . . . . . . . . . . 14 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ 1)
5349rpge0d 11752 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ (√‘𝐷))
5447, 50, 52, 53le2sqd 12906 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1 ≤ (√‘𝐷) ↔ (1↑2) ≤ ((√‘𝐷)↑2)))
5546, 54mpbird 246 . . . . . . . . . . 11 (𝐷 ∈ ℕ → 1 ≤ (√‘𝐷))
5628, 55syl 17 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ (√‘𝐷))
57 nnge1 10923 . . . . . . . . . . 11 (𝑑 ∈ ℕ → 1 ≤ 𝑑)
5857ad2antll 761 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑑)
5923, 51jctir 559 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 ∈ ℝ ∧ 0 ≤ 1))
60 lemul12a 10760 . . . . . . . . . . 11 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (√‘𝐷) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑑 ∈ ℝ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6159, 31, 59, 33, 60syl22anc 1319 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6256, 58, 61mp2and 711 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 · 1) ≤ ((√‘𝐷) · 𝑑))
6340, 62syl5eqbrr 4619 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ ((√‘𝐷) · 𝑑))
6423, 23, 27, 34, 39, 63le2addd 10525 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ≤ (𝑐 + ((√‘𝐷) · 𝑑)))
6523, 25, 35, 37, 64ltletrd 10076 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
6665adantr 480 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
67 breq2 4587 . . . . . 6 (𝑥 = (𝑐 + ((√‘𝐷) · 𝑑)) → (1 < 𝑥 ↔ 1 < (𝑐 + ((√‘𝐷) · 𝑑))))
6867rspcev 3282 . . . . 5 (((𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷) ∧ 1 < (𝑐 + ((√‘𝐷) · 𝑑))) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
6921, 66, 68syl2anc 691 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
7069ex 449 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7170rexlimdvva 3020 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7211, 71mpd 15 1 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897  cdif 3537   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cq 11664  cexp 12722  csqrt 13821  NNcsquarenn 36418  Pell1QRcpell1qr 36419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ico 12052  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282  df-squarenn 36423  df-pell1qr 36424
This theorem is referenced by:  pellfundre  36463  pellfundge  36464  pellfundglb  36467
  Copyright terms: Public domain W3C validator