Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrexplicit Structured version   Visualization version   GIF version

Theorem pellqrexplicit 36459
 Description: Condition for a calculated real to be a Pell solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellqrexplicit (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))

Proof of Theorem pellqrexplicit
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0re 11178 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
213ad2ant2 1076 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
3 eldifi 3694 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
433ad2ant1 1075 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℕ)
54nnrpd 11746 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℝ+)
65rpsqrtcld 13998 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ+)
76rpred 11748 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ)
8 nn0re 11178 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
983ad2ant3 1077 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
107, 9remulcld 9949 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((√‘𝐷) · 𝐵) ∈ ℝ)
112, 10readdcld 9948 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
1211adantr 480 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
13 simpl2 1058 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐴 ∈ ℕ0)
14 simpl3 1059 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐵 ∈ ℕ0)
15 eqidd 2611 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)))
16 simpr 476 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
17 oveq1 6556 . . . . . 6 (𝑎 = 𝐴 → (𝑎 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝑏)))
1817eqeq2d 2620 . . . . 5 (𝑎 = 𝐴 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏))))
19 oveq1 6556 . . . . . . 7 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
2019oveq1d 6564 . . . . . 6 (𝑎 = 𝐴 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝑏↑2))))
2120eqeq1d 2612 . . . . 5 (𝑎 = 𝐴 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1))
2218, 21anbi12d 743 . . . 4 (𝑎 = 𝐴 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1)))
23 oveq2 6557 . . . . . . 7 (𝑏 = 𝐵 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 𝐵))
2423oveq2d 6565 . . . . . 6 (𝑏 = 𝐵 → (𝐴 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝐵)))
2524eqeq2d 2620 . . . . 5 (𝑏 = 𝐵 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵))))
26 oveq1 6556 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏↑2) = (𝐵↑2))
2726oveq2d 6565 . . . . . . 7 (𝑏 = 𝐵 → (𝐷 · (𝑏↑2)) = (𝐷 · (𝐵↑2)))
2827oveq2d 6565 . . . . . 6 (𝑏 = 𝐵 → ((𝐴↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
2928eqeq1d 2612 . . . . 5 (𝑏 = 𝐵 → (((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1))
3025, 29anbi12d 743 . . . 4 (𝑏 = 𝐵 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)))
3122, 30rspc2ev 3295 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
3213, 14, 15, 16, 31syl112anc 1322 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
33 elpell1qr 36429 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
34333ad2ant1 1075 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3534adantr 480 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3612, 32, 35mpbir2and 959 1 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ∖ cdif 3537  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ↑cexp 12722  √csqrt 13821  ◻NNcsquarenn 36418  Pell1QRcpell1qr 36419 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-pell1qr 36424 This theorem is referenced by:  pellqrex  36461  rmspecfund  36492
 Copyright terms: Public domain W3C validator