Step | Hyp | Ref
| Expression |
1 | | nn0re 11178 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
2 | 1 | 3ad2ant2 1076 |
. . . 4
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ 𝐴 ∈
ℝ) |
3 | | eldifi 3694 |
. . . . . . . . 9
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 𝐷 ∈ ℕ) |
4 | 3 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ 𝐷 ∈
ℕ) |
5 | 4 | nnrpd 11746 |
. . . . . . 7
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ 𝐷 ∈
ℝ+) |
6 | 5 | rpsqrtcld 13998 |
. . . . . 6
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ (√‘𝐷)
∈ ℝ+) |
7 | 6 | rpred 11748 |
. . . . 5
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ (√‘𝐷)
∈ ℝ) |
8 | | nn0re 11178 |
. . . . . 6
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℝ) |
9 | 8 | 3ad2ant3 1077 |
. . . . 5
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ 𝐵 ∈
ℝ) |
10 | 7, 9 | remulcld 9949 |
. . . 4
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ ((√‘𝐷)
· 𝐵) ∈
ℝ) |
11 | 2, 10 | readdcld 9948 |
. . 3
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ (𝐴 +
((√‘𝐷) ·
𝐵)) ∈
ℝ) |
12 | 11 | adantr 480 |
. 2
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
∧ ((𝐴↑2) −
(𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ) |
13 | | simpl2 1058 |
. . 3
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
∧ ((𝐴↑2) −
(𝐷 · (𝐵↑2))) = 1) → 𝐴 ∈
ℕ0) |
14 | | simpl3 1059 |
. . 3
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
∧ ((𝐴↑2) −
(𝐷 · (𝐵↑2))) = 1) → 𝐵 ∈
ℕ0) |
15 | | eqidd 2611 |
. . 3
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
∧ ((𝐴↑2) −
(𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵))) |
16 | | simpr 476 |
. . 3
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
∧ ((𝐴↑2) −
(𝐷 · (𝐵↑2))) = 1) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) |
17 | | oveq1 6556 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑎 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝑏))) |
18 | 17 | eqeq2d 2620 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)))) |
19 | | oveq1 6556 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2)) |
20 | 19 | oveq1d 6564 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝑏↑2)))) |
21 | 20 | eqeq1d 2612 |
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1)) |
22 | 18, 21 | anbi12d 743 |
. . . 4
⊢ (𝑎 = 𝐴 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1))) |
23 | | oveq2 6557 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 𝐵)) |
24 | 23 | oveq2d 6565 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝐴 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝐵))) |
25 | 24 | eqeq2d 2620 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)))) |
26 | | oveq1 6556 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (𝑏↑2) = (𝐵↑2)) |
27 | 26 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝐷 · (𝑏↑2)) = (𝐷 · (𝐵↑2))) |
28 | 27 | oveq2d 6565 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐴↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝐵↑2)))) |
29 | 28 | eqeq1d 2612 |
. . . . 5
⊢ (𝑏 = 𝐵 → (((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) |
30 | 25, 29 | anbi12d 743 |
. . . 4
⊢ (𝑏 = 𝐵 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1))) |
31 | 22, 30 | rspc2ev 3295 |
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ∃𝑎 ∈ ℕ0
∃𝑏 ∈
ℕ0 ((𝐴 +
((√‘𝐷) ·
𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) |
32 | 13, 14, 15, 16, 31 | syl112anc 1322 |
. 2
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
∧ ((𝐴↑2) −
(𝐷 · (𝐵↑2))) = 1) →
∃𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) |
33 | | elpell1qr 36429 |
. . . 4
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0
∃𝑏 ∈
ℕ0 ((𝐴 +
((√‘𝐷) ·
𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
34 | 33 | 3ad2ant1 1075 |
. . 3
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ ((𝐴 +
((√‘𝐷) ·
𝐵)) ∈
(Pell1QR‘𝐷) ↔
((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0
∃𝑏 ∈
ℕ0 ((𝐴 +
((√‘𝐷) ·
𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
35 | 34 | adantr 480 |
. 2
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
∧ ((𝐴↑2) −
(𝐷 · (𝐵↑2))) = 1) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0
∃𝑏 ∈
ℕ0 ((𝐴 +
((√‘𝐷) ·
𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
36 | 12, 32, 35 | mpbir2and 959 |
1
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
∧ ((𝐴↑2) −
(𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷)) |