Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsdom Structured version   Visualization version   GIF version

Theorem lindsdom 32573
Description: A linearly independent set in a free linear module of finite dimension over a division ring is smaller than the dimension of the module. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
lindsdom ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)

Proof of Theorem lindsdom
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngring 18577 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2610 . . . . . . . 8 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
32frlmlmod 19912 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
41, 3sylan 487 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
5 eqid 2610 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
6 eqid 2610 . . . . . . 7 (LSubSp‘(𝑅 freeLMod 𝐼)) = (LSubSp‘(𝑅 freeLMod 𝐼))
75, 6lssmre 18787 . . . . . 6 ((𝑅 freeLMod 𝐼) ∈ LMod → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))))
84, 7syl 17 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))))
983adant3 1074 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))))
10 eqid 2610 . . . 4 (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))
11 eqid 2610 . . . 4 (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) = (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))
122frlmsca 19916 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
13 simpl 472 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
1412, 13eqeltrrd 2689 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing)
15 eqid 2610 . . . . . . . . 9 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
1615islvec 18925 . . . . . . . 8 ((𝑅 freeLMod 𝐼) ∈ LVec ↔ ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing))
174, 14, 16sylanbrc 695 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LVec)
186, 10, 5lssacsex 18965 . . . . . . 7 ((𝑅 freeLMod 𝐼) ∈ LVec → ((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (ACS‘(Base‘(𝑅 freeLMod 𝐼))) ∧ ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧}))))
1917, 18syl 17 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (ACS‘(Base‘(𝑅 freeLMod 𝐼))) ∧ ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧}))))
2019simprd 478 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧})))
21203adant3 1074 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑥 ∈ 𝒫 (Base‘(𝑅 freeLMod 𝐼))∀𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))∀𝑧 ∈ (((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑥 ∪ {𝑧})))
22 dif0 3904 . . . . . 6 ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅) = (Base‘(𝑅 freeLMod 𝐼))
2322linds1 19968 . . . . 5 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
24233ad2ant3 1077 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
25 eqid 2610 . . . . . . . . 9 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
2625, 2, 5uvcff 19949 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
271, 26sylan 487 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
28 frn 5966 . . . . . . 7 ((𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)) → ran (𝑅 unitVec 𝐼) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
2927, 28syl 17 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
3029, 22syl6sseqr 3615 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
31303adant3 1074 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ran (𝑅 unitVec 𝐼) ⊆ ((Base‘(𝑅 freeLMod 𝐼)) ∖ ∅))
325linds1 19968 . . . . . 6 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
33323ad2ant3 1077 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
34 un0 3919 . . . . . . . 8 (ran (𝑅 unitVec 𝐼) ∪ ∅) = ran (𝑅 unitVec 𝐼)
3534fveq2i 6106 . . . . . . 7 ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼))
36 eqid 2610 . . . . . . . . . . 11 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
376, 36, 10mrclsp 18810 . . . . . . . . . 10 ((𝑅 freeLMod 𝐼) ∈ LMod → (LSpan‘(𝑅 freeLMod 𝐼)) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))))
384, 37syl 17 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (LSpan‘(𝑅 freeLMod 𝐼)) = (mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼))))
3938fveq1d 6105 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼)))
40 eqid 2610 . . . . . . . . . . 11 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
412, 25, 40frlmlbs 19955 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
421, 41sylan 487 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
435, 40, 36lbssp 18900 . . . . . . . . 9 (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
4442, 43syl 17 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
4539, 44eqtr3d 2646 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘ran (𝑅 unitVec 𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
4635, 45syl5eq 2656 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = (Base‘(𝑅 freeLMod 𝐼)))
47463adant3 1074 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)) = (Base‘(𝑅 freeLMod 𝐼)))
4833, 47sseqtr4d 3605 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(ran (𝑅 unitVec 𝐼) ∪ ∅)))
49 un0 3919 . . . . 5 (𝑋 ∪ ∅) = 𝑋
50 drngnzr 19083 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
5150adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
5212, 51eqeltrrd 2689 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
534, 52jca 553 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
5436, 15lindsind2 19977 . . . . . . . . . . 11 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
55543expa 1257 . . . . . . . . . 10 (((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
5653, 55sylanl1 680 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
5738fveq1d 6105 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) = ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
5857eleq2d 2673 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ↔ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
5958ad2antrr 758 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ↔ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
6056, 59mtbid 313 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦𝑋) → ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
6160ralrimiva 2949 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
62613impa 1251 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦})))
6310, 11ismri2 16115 . . . . . . . 8 (((LSubSp‘(𝑅 freeLMod 𝐼)) ∈ (Moore‘(Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
648, 32, 63syl2an 493 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
65643impa 1251 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))) ↔ ∀𝑦𝑋 ¬ 𝑦 ∈ ((mrCls‘(LSubSp‘(𝑅 freeLMod 𝐼)))‘(𝑋 ∖ {𝑦}))))
6662, 65mpbird 246 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))
6749, 66syl5eqel 2692 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))
68 simpr 476 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin)
6925uvcendim 20005 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ 𝐼 ∈ Fin) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
7050, 69sylan 487 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
71 enfi 8061 . . . . . . . 8 (𝐼 ≈ ran (𝑅 unitVec 𝐼) → (𝐼 ∈ Fin ↔ ran (𝑅 unitVec 𝐼) ∈ Fin))
7270, 71syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝐼 ∈ Fin ↔ ran (𝑅 unitVec 𝐼) ∈ Fin))
7368, 72mpbid 221 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ∈ Fin)
7473olcd 407 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑋 ∈ Fin ∨ ran (𝑅 unitVec 𝐼) ∈ Fin))
75743adant3 1074 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∈ Fin ∨ ran (𝑅 unitVec 𝐼) ∈ Fin))
769, 10, 11, 21, 24, 31, 48, 67, 75mreexexd 16131 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ∃𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼)(𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))))
77 simpl 472 . . . . 5 ((𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) → 𝑋𝑓)
78 ovex 6577 . . . . . . 7 (𝑅 unitVec 𝐼) ∈ V
7978rnex 6992 . . . . . 6 ran (𝑅 unitVec 𝐼) ∈ V
80 elpwi 4117 . . . . . 6 (𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) → 𝑓 ⊆ ran (𝑅 unitVec 𝐼))
81 ssdomg 7887 . . . . . 6 (ran (𝑅 unitVec 𝐼) ∈ V → (𝑓 ⊆ ran (𝑅 unitVec 𝐼) → 𝑓 ≼ ran (𝑅 unitVec 𝐼)))
8279, 80, 81mpsyl 66 . . . . 5 (𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) → 𝑓 ≼ ran (𝑅 unitVec 𝐼))
83 endomtr 7900 . . . . 5 ((𝑋𝑓𝑓 ≼ ran (𝑅 unitVec 𝐼)) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8477, 82, 83syl2anr 494 . . . 4 ((𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼) ∧ (𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼))))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8584rexlimiva 3010 . . 3 (∃𝑓 ∈ 𝒫 ran (𝑅 unitVec 𝐼)(𝑋𝑓 ∧ (𝑓 ∪ ∅) ∈ (mrInd‘(LSubSp‘(𝑅 freeLMod 𝐼)))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8676, 85syl 17 . 2 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ ran (𝑅 unitVec 𝐼))
8770ensymd 7893 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ran (𝑅 unitVec 𝐼) ≈ 𝐼)
88873adant3 1074 . 2 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ran (𝑅 unitVec 𝐼) ≈ 𝐼)
89 domentr 7901 . 2 ((𝑋 ≼ ran (𝑅 unitVec 𝐼) ∧ ran (𝑅 unitVec 𝐼) ≈ 𝐼) → 𝑋𝐼)
9086, 88, 89syl2anc 691 1 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  cen 7838  cdom 7839  Fincfn 7841  Basecbs 15695  Scalarcsca 15771  Moorecmre 16065  mrClscmrc 16066  mrIndcmri 16067  ACScacs 16068  Ringcrg 18370  DivRingcdr 18570  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LBasisclbs 18895  LVecclvec 18923  NzRingcnzr 19078   freeLMod cfrlm 19909   unitVec cuvc 19940  LIndSclinds 19963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-mri 16071  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lmhm 18843  df-lbs 18896  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-nzr 19079  df-dsmm 19895  df-frlm 19910  df-uvc 19941  df-lindf 19964  df-linds 19965
This theorem is referenced by:  lindsenlbs  32574
  Copyright terms: Public domain W3C validator