Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbssp | Structured version Visualization version GIF version |
Description: The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
lbsss.v | ⊢ 𝑉 = (Base‘𝑊) |
lbsss.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lbssp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lbssp | ⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6130 | . . . . 5 ⊢ (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis) | |
2 | lbsss.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | 1, 2 | eleq2s 2706 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis) |
4 | lbsss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqid 2610 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
6 | eqid 2610 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
7 | eqid 2610 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
8 | lbssp.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | eqid 2610 | . . . . 5 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
10 | 4, 5, 6, 7, 2, 8, 9 | islbs 18897 | . . . 4 ⊢ (𝑊 ∈ dom LBasis → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
12 | 11 | ibi 255 | . 2 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))) |
13 | 12 | simp2d 1067 | 1 ⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∖ cdif 3537 ⊆ wss 3540 {csn 4125 dom cdm 5038 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 Scalarcsca 15771 ·𝑠 cvsca 15772 0gc0g 15923 LSpanclspn 18792 LBasisclbs 18895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-lbs 18896 |
This theorem is referenced by: islbs2 18975 islbs3 18976 frlmup3 19958 frlmup4 19959 lmimlbs 19994 lbslcic 19999 lindsdom 32573 matunitlindflem2 32576 aacllem 42356 |
Copyright terms: Public domain | W3C validator |