Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19lem3 Structured version   Visualization version   GIF version

Theorem jm2.19lem3 36576
Description: Lemma for jm2.19 36578. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.19lem3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))

Proof of Theorem jm2.19lem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . . . . . . 9 (𝑎 = 0 → (𝑎 · 𝑀) = (0 · 𝑀))
21oveq2d 6565 . . . . . . . 8 (𝑎 = 0 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (0 · 𝑀)))
32oveq2d 6565 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
43breq2d 4595 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
54bibi2d 331 . . . . 5 (𝑎 = 0 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀))))))
65imbi2d 329 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))))
7 oveq1 6556 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 · 𝑀) = (𝑏 · 𝑀))
87oveq2d 6565 . . . . . . . 8 (𝑎 = 𝑏 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝑏 · 𝑀)))
98oveq2d 6565 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))
109breq2d 4595 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
1110bibi2d 331 . . . . 5 (𝑎 = 𝑏 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))))
1211imbi2d 329 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))))
13 oveq1 6556 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝑎 · 𝑀) = ((𝑏 + 1) · 𝑀))
1413oveq2d 6565 . . . . . . . 8 (𝑎 = (𝑏 + 1) → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
1514oveq2d 6565 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
1615breq2d 4595 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
1716bibi2d 331 . . . . 5 (𝑎 = (𝑏 + 1) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))))
1817imbi2d 329 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
19 oveq1 6556 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎 · 𝑀) = (𝐼 · 𝑀))
2019oveq2d 6565 . . . . . . . 8 (𝑎 = 𝐼 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝐼 · 𝑀)))
2120oveq2d 6565 . . . . . . 7 (𝑎 = 𝐼 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))
2221breq2d 4595 . . . . . 6 (𝑎 = 𝐼 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
2322bibi2d 331 . . . . 5 (𝑎 = 𝐼 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
2423imbi2d 329 . . . 4 (𝑎 = 𝐼 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))))
25 zcn 11259 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2625ad2antrl 760 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
2726mul02d 10113 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (0 · 𝑀) = 0)
2827oveq2d 6565 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + (0 · 𝑀)) = (𝑁 + 0))
29 zcn 11259 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3029ad2antll 761 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
3130addid1d 10115 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + 0) = 𝑁)
3228, 31eqtr2d 2645 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 = (𝑁 + (0 · 𝑀)))
3332oveq2d 6565 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴 Yrm 𝑁) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
3433breq2d 4595 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
35 simp3 1056 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
36 simprl 790 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
37 simprrl 800 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
38 simprrr 801 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
39 nn0z 11277 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
4039adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℤ)
4140, 37zmulcld 11364 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℤ)
4238, 41zaddcld 11362 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + (𝑏 · 𝑀)) ∈ ℤ)
43 jm2.19lem2 36575 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ (𝑁 + (𝑏 · 𝑀)) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4436, 37, 42, 43syl3anc 1318 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4538zcnd 11359 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℂ)
4641zcnd 11359 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℂ)
4737zcnd 11359 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℂ)
4845, 46, 47addassd 9941 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 · 𝑀) + 𝑀)))
49 nn0cn 11179 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
5049adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℂ)
51 1cnd 9935 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℂ)
5250, 51, 47adddird 9944 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · 𝑀) = ((𝑏 · 𝑀) + (1 · 𝑀)))
5347mulid2d 9937 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · 𝑀) = 𝑀)
5453oveq2d 6565 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + (1 · 𝑀)) = ((𝑏 · 𝑀) + 𝑀))
5552, 54eqtr2d 2645 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + 𝑀) = ((𝑏 + 1) · 𝑀))
5655oveq2d 6565 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + ((𝑏 · 𝑀) + 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5748, 56eqtrd 2644 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5857oveq2d 6565 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
5958breq2d 4595 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6044, 59bitrd 267 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
61603adant3 1074 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6235, 61bitrd 267 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
63623exp 1256 . . . . 5 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
6463a2d 29 . . . 4 (𝑏 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
656, 12, 18, 24, 34, 64nn0ind 11348 . . 3 (𝐼 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
6665com12 32 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
67663impia 1253 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cdvds 14821   Yrm crmy 36483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-squarenn 36423  df-pell1qr 36424  df-pell14qr 36425  df-pell1234qr 36426  df-pellfund 36427  df-rmx 36484  df-rmy 36485
This theorem is referenced by:  jm2.19lem4  36577
  Copyright terms: Public domain W3C validator