Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islptre Structured version   Visualization version   GIF version

Theorem islptre 38686
Description: An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islptre.1 𝐽 = (topGen‘ran (,))
islptre.2 (𝜑𝐴 ⊆ ℝ)
islptre.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
islptre (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐽,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem islptre
Dummy variables 𝑛 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islptre.1 . . . . . 6 𝐽 = (topGen‘ran (,))
2 retopon 22377 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
31, 2eqeltri 2684 . . . . 5 𝐽 ∈ (TopOn‘ℝ)
43topontopi 20546 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 islptre.2 . . 3 (𝜑𝐴 ⊆ ℝ)
7 islptre.3 . . 3 (𝜑𝐵 ∈ ℝ)
83toponunii 20547 . . . 4 ℝ = 𝐽
98islp2 20759 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
105, 6, 7, 9syl3anc 1318 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
11 simp1r 1079 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12 iooretop 22379 . . . . . . . . . . . 12 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
1312, 1eleqtrri 2687 . . . . . . . . . . 11 (𝑎(,)𝑏) ∈ 𝐽
1413a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ 𝐽)
15 snssi 4280 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ (𝑎(,)𝑏))
1615adantl 481 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ (𝑎(,)𝑏))
17 ssid 3587 . . . . . . . . . . 11 (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏)
1817a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))
19 sseq2 3590 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → ({𝐵} ⊆ 𝑣 ↔ {𝐵} ⊆ (𝑎(,)𝑏)))
20 sseq1 3589 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → (𝑣 ⊆ (𝑎(,)𝑏) ↔ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏)))
2119, 20anbi12d 743 . . . . . . . . . . 11 (𝑣 = (𝑎(,)𝑏) → (({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)) ↔ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))))
2221rspcev 3282 . . . . . . . . . 10 (((𝑎(,)𝑏) ∈ 𝐽 ∧ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
2314, 16, 18, 22syl12anc 1316 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
24 ioossre 12106 . . . . . . . . 9 (𝑎(,)𝑏) ⊆ ℝ
2523, 24jctil 558 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏))))
26 elioore 12076 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ)
2726snssd 4281 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ ℝ)
2827adantl 481 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ ℝ)
298isnei 20717 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
304, 28, 29sylancr 694 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
3125, 30mpbird 246 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
32313adant1 1072 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
33 ineq1 3769 . . . . . . . 8 (𝑛 = (𝑎(,)𝑏) → (𝑛 ∩ (𝐴 ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})))
3433neeq1d 2841 . . . . . . 7 (𝑛 = (𝑎(,)𝑏) → ((𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
3534rspccva 3281 . . . . . 6 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ∧ (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵})) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
3611, 32, 35syl2anc 691 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
37363exp 1256 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
3837ralrimivv 2953 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
397snssd 4281 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ ℝ)
408isnei 20717 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
414, 39, 40sylancr 694 . . . . . . . 8 (𝜑 → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
4241simplbda 652 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))
431eleq2i 2680 . . . . . . . . . . . . . . 15 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
4443biimpi 205 . . . . . . . . . . . . . 14 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
45443ad2ant2 1076 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝑣 ∈ (topGen‘ran (,)))
46 simp1 1054 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝜑)
47 simp3l 1082 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → {𝐵} ⊆ 𝑣)
48 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → {𝐵} ⊆ 𝑣)
497adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵 ∈ ℝ)
50 snssg 4268 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5149, 50syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5248, 51mpbird 246 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵𝑣)
5346, 47, 52syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝐵𝑣)
5445, 53jca 553 . . . . . . . . . . . 12 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣))
55 tg2 20580 . . . . . . . . . . . 12 ((𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣) → ∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣))
56 ioof 12142 . . . . . . . . . . . . . . . . 17 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
57 ffn 5958 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
58 ovelrn 6708 . . . . . . . . . . . . . . . . 17 ((,) Fn (ℝ* × ℝ*) → (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏)))
5956, 57, 58mp2b 10 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
6059biimpi 205 . . . . . . . . . . . . . . 15 (𝑢 ∈ ran (,) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
6160adantr 480 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
62 simpll 786 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵𝑢)
63 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢 = (𝑎(,)𝑏))
6462, 63eleqtrd 2690 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵 ∈ (𝑎(,)𝑏))
65 simplr 788 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢𝑣)
6663, 65eqsstr3d 3603 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ 𝑣)
6764, 66jca 553 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
6867ex 449 . . . . . . . . . . . . . . . . 17 ((𝐵𝑢𝑢𝑣) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
6968adantl 481 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7069reximdv 2999 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7170reximdv 2999 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7261, 71mpd 15 . . . . . . . . . . . . 13 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7372rexlimiva 3010 . . . . . . . . . . . 12 (∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7454, 55, 733syl 18 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
75 simpl3r 1110 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → 𝑣𝑛)
7675adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → 𝑣𝑛)
77 sstr 3576 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ 𝑣𝑣𝑛) → (𝑎(,)𝑏) ⊆ 𝑛)
7877expcom 450 . . . . . . . . . . . . . . 15 (𝑣𝑛 → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
7976, 78syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
8079anim2d 587 . . . . . . . . . . . . 13 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8180reximdva 3000 . . . . . . . . . . . 12 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8281reximdva 3000 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8374, 82mpd 15 . . . . . . . . . 10 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
84833exp 1256 . . . . . . . . 9 (𝜑 → (𝑣𝐽 → (({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))))
8584rexlimdv 3012 . . . . . . . 8 (𝜑 → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8685adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8742, 86mpd 15 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
8887adantlr 747 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
89 nfv 1830 . . . . . . . 8 𝑎𝜑
90 nfra1 2925 . . . . . . . 8 𝑎𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9189, 90nfan 1816 . . . . . . 7 𝑎(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
92 nfv 1830 . . . . . . 7 𝑎 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9391, 92nfan 1816 . . . . . 6 𝑎((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
94 nfv 1830 . . . . . 6 𝑎(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
95 nfv 1830 . . . . . . . . . . 11 𝑏𝜑
96 nfra2 2930 . . . . . . . . . . 11 𝑏𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9795, 96nfan 1816 . . . . . . . . . 10 𝑏(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
98 nfv 1830 . . . . . . . . . 10 𝑏 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9997, 98nfan 1816 . . . . . . . . 9 𝑏((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
100 nfv 1830 . . . . . . . . 9 𝑏 𝑎 ∈ ℝ*
10199, 100nfan 1816 . . . . . . . 8 𝑏(((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*)
102 nfv 1830 . . . . . . . 8 𝑏(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
103 inss1 3795 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑎(,)𝑏)
104 simp3r 1083 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎(,)𝑏) ⊆ 𝑛)
105103, 104syl5ss 3579 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ 𝑛)
106 inss2 3796 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
107106a1i 11 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵}))
108105, 107ssind 3799 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})))
109 simpllr 795 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
1101093ad2ant1 1075 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
111 simp1r 1079 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑎 ∈ ℝ*)
112 simp2 1055 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑏 ∈ ℝ*)
113111, 112jca 553 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
114 simp3l 1082 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝐵 ∈ (𝑎(,)𝑏))
115 rsp2 2920 . . . . . . . . . . 11 (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
116110, 113, 114, 115syl3c 64 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
117 ssn0 3928 . . . . . . . . . 10 ((((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})) ∧ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
118108, 116, 117syl2anc 691 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
1191183exp 1256 . . . . . . . 8 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (𝑏 ∈ ℝ* → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
120101, 102, 119rexlimd 3008 . . . . . . 7 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
121120ex 449 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑎 ∈ ℝ* → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12293, 94, 121rexlimd 3008 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
12388, 122mpd 15 . . . 4 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
124123ralrimiva 2949 . . 3 ((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12538, 124impbida 873 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12610, 125bitrd 267 1 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   × cxp 5036  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  *cxr 9952  (,)cioo 12046  topGenctg 15921  Topctop 20517  TopOnctopon 20518  neicnei 20711  limPtclp 20748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750
This theorem is referenced by:  lptioo2  38698  lptioo1  38699  lptre2pt  38707
  Copyright terms: Public domain W3C validator