Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islptre Structured version   Unicode version

Theorem islptre 31579
Description: An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islptre.1  |-  J  =  ( topGen `  ran  (,) )
islptre.2  |-  ( ph  ->  A  C_  RR )
islptre.3  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
islptre  |-  ( ph  ->  ( B  e.  ( ( limPt `  J ) `  A )  <->  A. a  e.  RR*  A. b  e. 
RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) ) )
Distinct variable groups:    A, a,
b    B, a, b    J, a, b    ph, a, b

Proof of Theorem islptre
Dummy variables  n  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islptre.1 . . . . . 6  |-  J  =  ( topGen `  ran  (,) )
2 retopon 21248 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
31, 2eqeltri 2527 . . . . 5  |-  J  e.  (TopOn `  RR )
43topontopi 19410 . . . 4  |-  J  e. 
Top
54a1i 11 . . 3  |-  ( ph  ->  J  e.  Top )
6 islptre.2 . . 3  |-  ( ph  ->  A  C_  RR )
7 islptre.3 . . 3  |-  ( ph  ->  B  e.  RR )
83toponunii 19411 . . . 4  |-  RR  =  U. J
98islp2 19624 . . 3  |-  ( ( J  e.  Top  /\  A  C_  RR  /\  B  e.  RR )  ->  ( B  e.  ( ( limPt `  J ) `  A )  <->  A. n  e.  ( ( nei `  J
) `  { B } ) ( n  i^i  ( A  \  { B } ) )  =/=  (/) ) )
105, 6, 7, 9syl3anc 1229 . 2  |-  ( ph  ->  ( B  e.  ( ( limPt `  J ) `  A )  <->  A. n  e.  ( ( nei `  J
) `  { B } ) ( n  i^i  ( A  \  { B } ) )  =/=  (/) ) )
11 simp1r 1022 . . . . . 6  |-  ( ( ( ph  /\  A. n  e.  ( ( nei `  J ) `  { B } ) ( n  i^i  ( A 
\  { B }
) )  =/=  (/) )  /\  ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  A. n  e.  ( ( nei `  J
) `  { B } ) ( n  i^i  ( A  \  { B } ) )  =/=  (/) )
12 iooretop 21251 . . . . . . . . . . . 12  |-  ( a (,) b )  e.  ( topGen `  ran  (,) )
1312, 1eleqtrri 2530 . . . . . . . . . . 11  |-  ( a (,) b )  e.  J
1413a1i 11 . . . . . . . . . 10  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  ( a (,) b )  e.  J
)
15 snssi 4159 . . . . . . . . . . 11  |-  ( B  e.  ( a (,) b )  ->  { B }  C_  ( a (,) b ) )
1615adantl 466 . . . . . . . . . 10  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  { B }  C_  ( a (,) b ) )
17 ssid 3508 . . . . . . . . . . 11  |-  ( a (,) b )  C_  ( a (,) b
)
1817a1i 11 . . . . . . . . . 10  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  ( a (,) b )  C_  (
a (,) b ) )
19 sseq2 3511 . . . . . . . . . . . 12  |-  ( v  =  ( a (,) b )  ->  ( { B }  C_  v  <->  { B }  C_  (
a (,) b ) ) )
20 sseq1 3510 . . . . . . . . . . . 12  |-  ( v  =  ( a (,) b )  ->  (
v  C_  ( a (,) b )  <->  ( a (,) b )  C_  (
a (,) b ) ) )
2119, 20anbi12d 710 . . . . . . . . . . 11  |-  ( v  =  ( a (,) b )  ->  (
( { B }  C_  v  /\  v  C_  ( a (,) b
) )  <->  ( { B }  C_  ( a (,) b )  /\  ( a (,) b
)  C_  ( a (,) b ) ) ) )
2221rspcev 3196 . . . . . . . . . 10  |-  ( ( ( a (,) b
)  e.  J  /\  ( { B }  C_  ( a (,) b
)  /\  ( a (,) b )  C_  (
a (,) b ) ) )  ->  E. v  e.  J  ( { B }  C_  v  /\  v  C_  ( a (,) b ) ) )
2314, 16, 18, 22syl12anc 1227 . . . . . . . . 9  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  E. v  e.  J  ( { B }  C_  v  /\  v  C_  ( a (,) b ) ) )
24 ioossre 11597 . . . . . . . . 9  |-  ( a (,) b )  C_  RR
2523, 24jctil 537 . . . . . . . 8  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  ( (
a (,) b ) 
C_  RR  /\  E. v  e.  J  ( { B }  C_  v  /\  v  C_  ( a (,) b ) ) ) )
26 elioore 11570 . . . . . . . . . . 11  |-  ( B  e.  ( a (,) b )  ->  B  e.  RR )
2726snssd 4160 . . . . . . . . . 10  |-  ( B  e.  ( a (,) b )  ->  { B }  C_  RR )
2827adantl 466 . . . . . . . . 9  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  { B }  C_  RR )
298isnei 19582 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  { B }  C_  RR )  ->  ( ( a (,) b )  e.  ( ( nei `  J
) `  { B } )  <->  ( (
a (,) b ) 
C_  RR  /\  E. v  e.  J  ( { B }  C_  v  /\  v  C_  ( a (,) b ) ) ) ) )
304, 28, 29sylancr 663 . . . . . . . 8  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  ( (
a (,) b )  e.  ( ( nei `  J ) `  { B } )  <->  ( (
a (,) b ) 
C_  RR  /\  E. v  e.  J  ( { B }  C_  v  /\  v  C_  ( a (,) b ) ) ) ) )
3125, 30mpbird 232 . . . . . . 7  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  ( a (,) b )  e.  ( ( nei `  J
) `  { B } ) )
32313adant1 1015 . . . . . 6  |-  ( ( ( ph  /\  A. n  e.  ( ( nei `  J ) `  { B } ) ( n  i^i  ( A 
\  { B }
) )  =/=  (/) )  /\  ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  ( a (,) b )  e.  ( ( nei `  J
) `  { B } ) )
33 ineq1 3678 . . . . . . . 8  |-  ( n  =  ( a (,) b )  ->  (
n  i^i  ( A  \  { B } ) )  =  ( ( a (,) b )  i^i  ( A  \  { B } ) ) )
3433neeq1d 2720 . . . . . . 7  |-  ( n  =  ( a (,) b )  ->  (
( n  i^i  ( A  \  { B }
) )  =/=  (/)  <->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )
3534rspccva 3195 . . . . . 6  |-  ( ( A. n  e.  ( ( nei `  J
) `  { B } ) ( n  i^i  ( A  \  { B } ) )  =/=  (/)  /\  ( a (,) b )  e.  ( ( nei `  J
) `  { B } ) )  -> 
( ( a (,) b )  i^i  ( A  \  { B }
) )  =/=  (/) )
3611, 32, 35syl2anc 661 . . . . 5  |-  ( ( ( ph  /\  A. n  e.  ( ( nei `  J ) `  { B } ) ( n  i^i  ( A 
\  { B }
) )  =/=  (/) )  /\  ( a  e.  RR*  /\  b  e.  RR* )  /\  B  e.  (
a (,) b ) )  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) )
37363exp 1196 . . . 4  |-  ( (
ph  /\  A. n  e.  ( ( nei `  J
) `  { B } ) ( n  i^i  ( A  \  { B } ) )  =/=  (/) )  ->  (
( a  e.  RR*  /\  b  e.  RR* )  ->  ( B  e.  ( a (,) b )  ->  ( ( a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) ) )
3837ralrimivv 2863 . . 3  |-  ( (
ph  /\  A. n  e.  ( ( nei `  J
) `  { B } ) ( n  i^i  ( A  \  { B } ) )  =/=  (/) )  ->  A. a  e.  RR*  A. b  e. 
RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )
397snssd 4160 . . . . . . . . 9  |-  ( ph  ->  { B }  C_  RR )
408isnei 19582 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  { B }  C_  RR )  ->  ( n  e.  ( ( nei `  J
) `  { B } )  <->  ( n  C_  RR  /\  E. v  e.  J  ( { B }  C_  v  /\  v  C_  n ) ) ) )
414, 39, 40sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( n  e.  ( ( nei `  J
) `  { B } )  <->  ( n  C_  RR  /\  E. v  e.  J  ( { B }  C_  v  /\  v  C_  n ) ) ) )
4241simplbda 624 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( nei `  J
) `  { B } ) )  ->  E. v  e.  J  ( { B }  C_  v  /\  v  C_  n
) )
431eleq2i 2521 . . . . . . . . . . . . . . 15  |-  ( v  e.  J  <->  v  e.  ( topGen `  ran  (,) )
)
4443biimpi 194 . . . . . . . . . . . . . 14  |-  ( v  e.  J  ->  v  e.  ( topGen `  ran  (,) )
)
45443ad2ant2 1019 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  -> 
v  e.  ( topGen ` 
ran  (,) ) )
46 simp1 997 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  ->  ph )
47 simp3l 1025 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  ->  { B }  C_  v
)
48 simpr 461 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  { B }  C_  v )  ->  { B }  C_  v
)
497adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  { B }  C_  v )  ->  B  e.  RR )
50 snssg 4148 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  ( B  e.  v  <->  { B }  C_  v ) )
5149, 50syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  { B }  C_  v )  -> 
( B  e.  v  <->  { B }  C_  v
) )
5248, 51mpbird 232 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  { B }  C_  v )  ->  B  e.  v )
5346, 47, 52syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  ->  B  e.  v )
5445, 53jca 532 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  -> 
( v  e.  (
topGen `  ran  (,) )  /\  B  e.  v
) )
55 tg2 19444 . . . . . . . . . . . 12  |-  ( ( v  e.  ( topGen ` 
ran  (,) )  /\  B  e.  v )  ->  E. u  e.  ran  (,) ( B  e.  u  /\  u  C_  v ) )
56 ioof 11633 . . . . . . . . . . . . . . . . 17  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
57 ffn 5721 . . . . . . . . . . . . . . . . 17  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
58 ovelrn 6436 . . . . . . . . . . . . . . . . 17  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( u  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  u  =  ( a (,) b ) ) )
5956, 57, 58mp2b 10 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  u  =  ( a (,) b ) )
6059biimpi 194 . . . . . . . . . . . . . . 15  |-  ( u  e.  ran  (,)  ->  E. a  e.  RR*  E. b  e.  RR*  u  =  ( a (,) b ) )
6160adantr 465 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ran  (,)  /\  ( B  e.  u  /\  u  C_  v ) )  ->  E. a  e.  RR*  E. b  e. 
RR*  u  =  ( a (,) b ) )
62 simpll 753 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( B  e.  u  /\  u  C_  v )  /\  u  =  ( a (,) b ) )  ->  B  e.  u )
63 simpr 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( B  e.  u  /\  u  C_  v )  /\  u  =  ( a (,) b ) )  ->  u  =  ( a (,) b
) )
6462, 63eleqtrd 2533 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  u  /\  u  C_  v )  /\  u  =  ( a (,) b ) )  ->  B  e.  ( a (,) b
) )
65 simplr 755 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( B  e.  u  /\  u  C_  v )  /\  u  =  ( a (,) b ) )  ->  u  C_  v
)
6663, 65eqsstr3d 3524 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  u  /\  u  C_  v )  /\  u  =  ( a (,) b ) )  ->  ( a (,) b )  C_  v
)
6764, 66jca 532 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  u  /\  u  C_  v )  /\  u  =  ( a (,) b ) )  ->  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) )
6867ex 434 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  u  /\  u  C_  v )  -> 
( u  =  ( a (,) b )  ->  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) ) )
6968adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ran  (,)  /\  ( B  e.  u  /\  u  C_  v ) )  ->  ( u  =  ( a (,) b )  ->  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  v ) ) )
7069reximdv 2917 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ran  (,)  /\  ( B  e.  u  /\  u  C_  v ) )  ->  ( E. b  e.  RR*  u  =  ( a (,) b
)  ->  E. b  e.  RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) ) )
7170reximdv 2917 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ran  (,)  /\  ( B  e.  u  /\  u  C_  v ) )  ->  ( E. a  e.  RR*  E. b  e.  RR*  u  =  ( a (,) b )  ->  E. a  e.  RR*  E. b  e.  RR*  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  v ) ) )
7261, 71mpd 15 . . . . . . . . . . . . 13  |-  ( ( u  e.  ran  (,)  /\  ( B  e.  u  /\  u  C_  v ) )  ->  E. a  e.  RR*  E. b  e. 
RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) )
7372rexlimiva 2931 . . . . . . . . . . . 12  |-  ( E. u  e.  ran  (,) ( B  e.  u  /\  u  C_  v )  ->  E. a  e.  RR*  E. b  e.  RR*  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  v ) )
7454, 55, 733syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  ->  E. a  e.  RR*  E. b  e.  RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) )
75 simpl3r 1053 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  /\  a  e. 
RR* )  ->  v  C_  n )
7675adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n
) )  /\  a  e.  RR* )  /\  b  e.  RR* )  ->  v  C_  n )
77 sstr 3497 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  C_  v  /\  v  C_  n )  -> 
( a (,) b
)  C_  n )
7877expcom 435 . . . . . . . . . . . . . . 15  |-  ( v 
C_  n  ->  (
( a (,) b
)  C_  v  ->  ( a (,) b ) 
C_  n ) )
7976, 78syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n
) )  /\  a  e.  RR* )  /\  b  e.  RR* )  ->  (
( a (,) b
)  C_  v  ->  ( a (,) b ) 
C_  n ) )
8079anim2d 565 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n
) )  /\  a  e.  RR* )  /\  b  e.  RR* )  ->  (
( B  e.  ( a (,) b )  /\  ( a (,) b )  C_  v
)  ->  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
) ) )
8180reximdva 2918 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  /\  a  e. 
RR* )  ->  ( E. b  e.  RR*  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  v )  ->  E. b  e.  RR*  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) ) )
8281reximdva 2918 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  -> 
( E. a  e. 
RR*  E. b  e.  RR*  ( B  e.  (
a (,) b )  /\  ( a (,) b )  C_  v
)  ->  E. a  e.  RR*  E. b  e. 
RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
) ) )
8374, 82mpd 15 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  J  /\  ( { B }  C_  v  /\  v  C_  n ) )  ->  E. a  e.  RR*  E. b  e.  RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
) )
84833exp 1196 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  J  ->  ( ( { B }  C_  v  /\  v  C_  n )  ->  E. a  e.  RR*  E. b  e. 
RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
) ) ) )
8584rexlimdv 2933 . . . . . . . 8  |-  ( ph  ->  ( E. v  e.  J  ( { B }  C_  v  /\  v  C_  n )  ->  E. a  e.  RR*  E. b  e. 
RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
) ) )
8685adantr 465 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( nei `  J
) `  { B } ) )  -> 
( E. v  e.  J  ( { B }  C_  v  /\  v  C_  n )  ->  E. a  e.  RR*  E. b  e. 
RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
) ) )
8742, 86mpd 15 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ( nei `  J
) `  { B } ) )  ->  E. a  e.  RR*  E. b  e.  RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
) )
8887adantlr 714 . . . . 5  |-  ( ( ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J ) `  { B } ) )  ->  E. a  e.  RR*  E. b  e.  RR*  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )
89 nfv 1694 . . . . . . . 8  |-  F/ a
ph
90 nfra1 2824 . . . . . . . 8  |-  F/ a A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) )
9189, 90nfan 1914 . . . . . . 7  |-  F/ a ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )
92 nfv 1694 . . . . . . 7  |-  F/ a  n  e.  ( ( nei `  J ) `
 { B }
)
9391, 92nfan 1914 . . . . . 6  |-  F/ a ( ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J ) `  { B } ) )
94 nfv 1694 . . . . . 6  |-  F/ a ( n  i^i  ( A  \  { B }
) )  =/=  (/)
95 nfv 1694 . . . . . . . . . . 11  |-  F/ b
ph
96 nfra2 2830 . . . . . . . . . . 11  |-  F/ b A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) )
9795, 96nfan 1914 . . . . . . . . . 10  |-  F/ b ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )
98 nfv 1694 . . . . . . . . . 10  |-  F/ b  n  e.  ( ( nei `  J ) `
 { B }
)
9997, 98nfan 1914 . . . . . . . . 9  |-  F/ b ( ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J ) `  { B } ) )
100 nfv 1694 . . . . . . . . 9  |-  F/ b  a  e.  RR*
10199, 100nfan 1914 . . . . . . . 8  |-  F/ b ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )
102 nfv 1694 . . . . . . . 8  |-  F/ b ( n  i^i  ( A  \  { B }
) )  =/=  (/)
103 inss1 3703 . . . . . . . . . . . 12  |-  ( ( a (,) b )  i^i  ( A  \  { B } ) ) 
C_  ( a (,) b )
104 simp3r 1026 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  ( a (,) b )  C_  n
)
105103, 104syl5ss 3500 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  ( ( a (,) b )  i^i  ( A  \  { B } ) )  C_  n )
106 inss2 3704 . . . . . . . . . . . 12  |-  ( ( a (,) b )  i^i  ( A  \  { B } ) ) 
C_  ( A  \  { B } )
107106a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  ( ( a (,) b )  i^i  ( A  \  { B } ) )  C_  ( A  \  { B } ) )
108105, 107ssind 3707 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  ( ( a (,) b )  i^i  ( A  \  { B } ) )  C_  ( n  i^i  ( A  \  { B }
) ) )
109 simpllr 760 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J ) `  { B } ) )  /\  a  e.  RR* )  ->  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )
1101093ad2ant1 1018 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )
111 simp1r 1022 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  a  e.  RR* )
112 simp2 998 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  b  e.  RR* )
113111, 112jca 532 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  ( a  e. 
RR*  /\  b  e.  RR* ) )
114 simp3l 1025 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  B  e.  ( a (,) b ) )
115 rsp2 2817 . . . . . . . . . . 11  |-  ( A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) )  ->  (
( a  e.  RR*  /\  b  e.  RR* )  ->  ( B  e.  ( a (,) b )  ->  ( ( a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) ) )
116110, 113, 114, 115syl3c 61 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  ( ( a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) )
117 ssn0 3804 . . . . . . . . . 10  |-  ( ( ( ( a (,) b )  i^i  ( A  \  { B }
) )  C_  (
n  i^i  ( A  \  { B } ) )  /\  ( ( a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) )  ->  (
n  i^i  ( A  \  { B } ) )  =/=  (/) )
118108, 116, 117syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\ 
A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J
) `  { B } ) )  /\  a  e.  RR* )  /\  b  e.  RR*  /\  ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n ) )  ->  ( n  i^i  ( A  \  { B } ) )  =/=  (/) )
1191183exp 1196 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J ) `  { B } ) )  /\  a  e.  RR* )  ->  ( b  e. 
RR*  ->  ( ( B  e.  ( a (,) b )  /\  (
a (,) b ) 
C_  n )  -> 
( n  i^i  ( A  \  { B }
) )  =/=  (/) ) ) )
120101, 102, 119rexlimd 2927 . . . . . . 7  |-  ( ( ( ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J ) `  { B } ) )  /\  a  e.  RR* )  ->  ( E. b  e.  RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
)  ->  ( n  i^i  ( A  \  { B } ) )  =/=  (/) ) )
121120ex 434 . . . . . 6  |-  ( ( ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J ) `  { B } ) )  ->  ( a  e. 
RR*  ->  ( E. b  e.  RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
)  ->  ( n  i^i  ( A  \  { B } ) )  =/=  (/) ) ) )
12293, 94, 121rexlimd 2927 . . . . 5  |-  ( ( ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J ) `  { B } ) )  ->  ( E. a  e.  RR*  E. b  e. 
RR*  ( B  e.  ( a (,) b
)  /\  ( a (,) b )  C_  n
)  ->  ( n  i^i  ( A  \  { B } ) )  =/=  (/) ) )
12388, 122mpd 15 . . . 4  |-  ( ( ( ph  /\  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  /\  n  e.  ( ( nei `  J ) `  { B } ) )  ->  ( n  i^i  ( A  \  { B } ) )  =/=  (/) )
124123ralrimiva 2857 . . 3  |-  ( (
ph  /\  A. a  e.  RR*  A. b  e. 
RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) )  ->  A. n  e.  (
( nei `  J
) `  { B } ) ( n  i^i  ( A  \  { B } ) )  =/=  (/) )
12538, 124impbida 832 . 2  |-  ( ph  ->  ( A. n  e.  ( ( nei `  J
) `  { B } ) ( n  i^i  ( A  \  { B } ) )  =/=  (/)  <->  A. a  e.  RR*  A. b  e.  RR*  ( B  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( A  \  { B } ) )  =/=  (/) ) ) )
12610, 125bitrd 253 1  |-  ( ph  ->  ( B  e.  ( ( limPt `  J ) `  A )  <->  A. a  e.  RR*  A. b  e. 
RR*  ( B  e.  ( a (,) b
)  ->  ( (
a (,) b )  i^i  ( A  \  { B } ) )  =/=  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794    \ cdif 3458    i^i cin 3460    C_ wss 3461   (/)c0 3770   ~Pcpw 3997   {csn 4014    X. cxp 4987   ran crn 4990    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281   RRcr 9494   RR*cxr 9630   (,)cioo 11540   topGenctg 14817   Topctop 19372  TopOnctopon 19373   neicnei 19576   limPtclp 19613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-n0 10803  df-z 10872  df-uz 11093  df-q 11194  df-ioo 11544  df-topgen 14823  df-top 19377  df-bases 19379  df-topon 19380  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-lp 19615
This theorem is referenced by:  lptioo2  31591  lptioo1  31592  lptre2pt  31600
  Copyright terms: Public domain W3C validator