MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval2 Structured version   Visualization version   GIF version

Theorem ipval2 26946
Description: Expansion of the inner product value ipval 26942. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipval2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))

Proof of Theorem ipval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dipfval.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . 3 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . 3 𝑁 = (normCV𝑈)
5 dipfval.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 26942 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
7 ax-icn 9874 . . . . . . . . 9 i ∈ ℂ
81, 2, 3, 4, 5ipval2lem4 26945 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
97, 8mpan2 703 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
10 mulcl 9899 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
117, 9, 10sylancr 694 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
12 neg1cn 11001 . . . . . . . . 9 -1 ∈ ℂ
131, 2, 3, 4, 5ipval2lem4 26945 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1412, 13mpan2 703 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1511, 14subcld 10271 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
16 negicn 10161 . . . . . . . . 9 -i ∈ ℂ
171, 2, 3, 4, 5ipval2lem4 26945 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
1816, 17mpan2 703 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
19 mulcl 9899 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
207, 18, 19sylancr 694 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
2115, 20negsubd 10277 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
2214mulm1d 10361 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
2322oveq2d 6565 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2411, 14negsubd 10277 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2523, 24eqtrd 2644 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
26 mulneg1 10345 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
277, 18, 26sylancr 694 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
2825, 27oveq12d 6567 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
29 subdi 10342 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
307, 29mp3an1 1403 . . . . . . . . 9 ((((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
319, 18, 30syl2anc 691 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3231oveq1d 6564 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
3311, 20, 14sub32d 10303 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3432, 33eqtrd 2644 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3521, 28, 343eqtr4d 2654 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
361, 3nvsid 26866 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
3736oveq2d 6565 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐴𝐺(1𝑆𝐵)) = (𝐴𝐺𝐵))
3837fveq2d 6107 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁‘(𝐴𝐺(1𝑆𝐵))) = (𝑁‘(𝐴𝐺𝐵)))
3938oveq1d 6564 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
40393adant2 1073 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4140oveq2d 6565 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)))
421, 2, 3, 4, 5ipval2lem3 26944 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ)
4342recnd 9947 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℂ)
4443mulid2d 9937 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4541, 44eqtrd 2644 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4635, 45oveq12d 6567 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
47 nnuz 11599 . . . . . 6 ℕ = (ℤ‘1)
48 df-4 10958 . . . . . 6 4 = (3 + 1)
49 oveq2 6557 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
50 i4 12829 . . . . . . . 8 (i↑4) = 1
5149, 50syl6eq 2660 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
5251oveq1d 6564 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘)𝑆𝐵) = (1𝑆𝐵))
5352oveq2d 6565 . . . . . . . . 9 (𝑘 = 4 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(1𝑆𝐵)))
5453fveq2d 6107 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(1𝑆𝐵))))
5554oveq1d 6564 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))
5651, 55oveq12d 6567 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))
57 nnnn0 11176 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
58 expcl 12740 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
597, 57, 58sylancr 694 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
6059adantl 481 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
611, 2, 3, 4, 5ipval2lem4 26945 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6259, 61sylan2 490 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6360, 62mulcld 9939 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) ∈ ℂ)
64 df-3 10957 . . . . . . 7 3 = (2 + 1)
65 oveq2 6557 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
66 i3 12828 . . . . . . . . 9 (i↑3) = -i
6765, 66syl6eq 2660 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
6867oveq1d 6564 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘)𝑆𝐵) = (-i𝑆𝐵))
6968oveq2d 6565 . . . . . . . . . 10 (𝑘 = 3 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-i𝑆𝐵)))
7069fveq2d 6107 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-i𝑆𝐵))))
7170oveq1d 6564 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))
7267, 71oveq12d 6567 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
73 df-2 10956 . . . . . . . 8 2 = (1 + 1)
74 oveq2 6557 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
75 i2 12827 . . . . . . . . . 10 (i↑2) = -1
7674, 75syl6eq 2660 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
7776oveq1d 6564 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘)𝑆𝐵) = (-1𝑆𝐵))
7877oveq2d 6565 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-1𝑆𝐵)))
7978fveq2d 6107 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
8079oveq1d 6564 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
8176, 80oveq12d 6567 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
82 1z 11284 . . . . . . . . . 10 1 ∈ ℤ
83 oveq2 6557 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
84 exp1 12728 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
857, 84ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
8683, 85syl6eq 2660 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
8786oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘)𝑆𝐵) = (i𝑆𝐵))
8887oveq2d 6565 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(i𝑆𝐵)))
8988fveq2d 6107 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(i𝑆𝐵))))
9089oveq1d 6564 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))
9186, 90oveq12d 6567 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9291fsum1 14320 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9382, 11, 92sylancr 694 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
94 1nn 10908 . . . . . . . . 9 1 ∈ ℕ
9593, 94jctil 558 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))))
96 eqidd 2611 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
9747, 73, 81, 63, 95, 96fsump1i 14342 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))))
98 eqidd 2611 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
9947, 64, 72, 63, 97, 98fsump1i 14342 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
100 eqidd 2611 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10147, 48, 56, 63, 99, 100fsump1i 14342 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))))
102101simprd 478 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10343, 14subcld 10271 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
1049, 18subcld 10271 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
105 mulcl 9899 . . . . . . 7 ((i ∈ ℂ ∧ (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
1067, 104, 105sylancr 694 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
107103, 106addcomd 10117 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
108106, 14, 43subadd23d 10293 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
109107, 108eqtr4d 2647 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
11046, 102, 1093eqtr4d 2654 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
111110oveq1d 6564 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
1126, 111eqtrd 2644 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  4c4 10949  0cn0 11169  cz 11254  ...cfz 12197  cexp 12722  Σcsu 14264  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  normCVcnmcv 26829  ·𝑖OLDcdip 26939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-grpo 26731  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-dip 26940
This theorem is referenced by:  4ipval2  26947  ipval3  26948  ipidsq  26949  dipcj  26953  dip0r  26956
  Copyright terms: Public domain W3C validator