Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval Structured version   Visualization version   GIF version

Theorem ipval 26942
 Description: Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, the norm is 𝑁, and the set of vectors is 𝑋. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipval ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑁   𝑆,𝑘   𝑈,𝑘   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑃(𝑘)

Proof of Theorem ipval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dipfval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . . . 5 𝑁 = (normCV𝑈)
5 dipfval.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5dipfval 26941 . . . 4 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
76oveqd 6566 . . 3 (𝑈 ∈ NrmCVec → (𝐴𝑃𝐵) = (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))𝐵))
8 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝐺((i↑𝑘)𝑆𝑦)) = (𝐴𝐺((i↑𝑘)𝑆𝑦)))
98fveq2d 6107 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦))) = (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦))))
109oveq1d 6564 . . . . . . 7 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2))
1110oveq2d 6565 . . . . . 6 (𝑥 = 𝐴 → ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)))
1211sumeq2sdv 14282 . . . . 5 (𝑥 = 𝐴 → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)))
1312oveq1d 6564 . . . 4 (𝑥 = 𝐴 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
14 oveq2 6557 . . . . . . . . . 10 (𝑦 = 𝐵 → ((i↑𝑘)𝑆𝑦) = ((i↑𝑘)𝑆𝐵))
1514oveq2d 6565 . . . . . . . . 9 (𝑦 = 𝐵 → (𝐴𝐺((i↑𝑘)𝑆𝑦)) = (𝐴𝐺((i↑𝑘)𝑆𝐵)))
1615fveq2d 6107 . . . . . . . 8 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦))) = (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))))
1716oveq1d 6564 . . . . . . 7 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2))
1817oveq2d 6565 . . . . . 6 (𝑦 = 𝐵 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)))
1918sumeq2sdv 14282 . . . . 5 (𝑦 = 𝐵 → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)))
2019oveq1d 6564 . . . 4 (𝑦 = 𝐵 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
21 eqid 2610 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
22 ovex 6577 . . . 4 𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4) ∈ V
2313, 20, 21, 22ovmpt2 6694 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
247, 23sylan9eq 2664 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
25243impb 1252 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1c1 9816  ici 9817   · cmul 9820   / cdiv 10563  2c2 10947  4c4 10949  ...cfz 12197  ↑cexp 12722  Σcsu 14264  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  normCVcnmcv 26829  ·𝑖OLDcdip 26939 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-sum 14265  df-dip 26940 This theorem is referenced by:  ipval2  26946  dipcl  26951  ipf  26952
 Copyright terms: Public domain W3C validator