Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dipfval | Structured version Visualization version GIF version |
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipfval | ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dipfval.7 | . 2 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
2 | fveq2 6103 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
3 | dipfval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 2, 3 | syl6eqr 2662 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
5 | fveq2 6103 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = (normCV‘𝑈)) | |
6 | dipfval.6 | . . . . . . . . . 10 ⊢ 𝑁 = (normCV‘𝑈) | |
7 | 5, 6 | syl6eqr 2662 | . . . . . . . . 9 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = 𝑁) |
8 | fveq2 6103 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = ( +𝑣 ‘𝑈)) | |
9 | dipfval.2 | . . . . . . . . . . 11 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
10 | 8, 9 | syl6eqr 2662 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → ( +𝑣 ‘𝑢) = 𝐺) |
11 | eqidd 2611 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → 𝑥 = 𝑥) | |
12 | fveq2 6103 | . . . . . . . . . . . 12 ⊢ (𝑢 = 𝑈 → ( ·𝑠OLD ‘𝑢) = ( ·𝑠OLD ‘𝑈)) | |
13 | dipfval.4 | . . . . . . . . . . . 12 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
14 | 12, 13 | syl6eqr 2662 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑈 → ( ·𝑠OLD ‘𝑢) = 𝑆) |
15 | 14 | oveqd 6566 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑈 → ((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦) = ((i↑𝑘)𝑆𝑦)) |
16 | 10, 11, 15 | oveq123d 6570 | . . . . . . . . 9 ⊢ (𝑢 = 𝑈 → (𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)) = (𝑥𝐺((i↑𝑘)𝑆𝑦))) |
17 | 7, 16 | fveq12d 6109 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → ((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦))) = (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))) |
18 | 17 | oveq1d 6564 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2) = ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) |
19 | 18 | oveq2d 6565 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
20 | 19 | sumeq2sdv 14282 | . . . . 5 ⊢ (𝑢 = 𝑈 → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
21 | 20 | oveq1d 6564 | . . . 4 ⊢ (𝑢 = 𝑈 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) |
22 | 4, 4, 21 | mpt2eq123dv 6615 | . . 3 ⊢ (𝑢 = 𝑈 → (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
23 | df-dip 26940 | . . 3 ⊢ ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4))) | |
24 | fvex 6113 | . . . . 5 ⊢ (BaseSet‘𝑈) ∈ V | |
25 | 3, 24 | eqeltri 2684 | . . . 4 ⊢ 𝑋 ∈ V |
26 | 25, 25 | mpt2ex 7136 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) ∈ V |
27 | 22, 23, 26 | fvmpt 6191 | . 2 ⊢ (𝑈 ∈ NrmCVec → (·𝑖OLD‘𝑈) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
28 | 1, 27 | syl5eq 2656 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 1c1 9816 ici 9817 · cmul 9820 / cdiv 10563 2c2 10947 4c4 10949 ...cfz 12197 ↑cexp 12722 Σcsu 14264 NrmCVeccnv 26823 +𝑣 cpv 26824 BaseSetcba 26825 ·𝑠OLD cns 26826 normCVcnmcv 26829 ·𝑖OLDcdip 26939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-seq 12664 df-sum 14265 df-dip 26940 |
This theorem is referenced by: ipval 26942 ipf 26952 dipcn 26959 |
Copyright terms: Public domain | W3C validator |