Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem1 Structured version   Visualization version   GIF version

Theorem ipcnlem1 22852
 Description: The inner product operation of a complex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
ipcnlem1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐷,𝑟   𝑥,𝑦,𝜑   𝑥,𝑟,𝑦,𝑇   𝑈,𝑟,𝑥,𝑦   , ,𝑟   𝑅,𝑟   𝑉,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   , (𝑥,𝑦)   𝑁(𝑥,𝑦,𝑟)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑟)

Proof of Theorem ipcnlem1
StepHypRef Expression
1 ipcn.t . . . 4 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
2 ipcn.r . . . . . 6 (𝜑𝑅 ∈ ℝ+)
32rphalfcld 11760 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ+)
4 ipcn.w . . . . . . . . 9 (𝜑𝑊 ∈ ℂPreHil)
5 cphnlm 22780 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
7 nlmngp 22291 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
9 ipcn.a . . . . . . 7 (𝜑𝐴𝑉)
10 ipcn.v . . . . . . . 8 𝑉 = (Base‘𝑊)
11 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
1210, 11nmcl 22230 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
138, 9, 12syl2anc 691 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
1410, 11nmge0 22231 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
158, 9, 14syl2anc 691 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
1613, 15ge0p1rpd 11778 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
173, 16rpdivcld 11765 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
181, 17syl5eqel 2692 . . 3 (𝜑𝑇 ∈ ℝ+)
19 ipcn.u . . . 4 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
20 ipcn.b . . . . . . . 8 (𝜑𝐵𝑉)
2110, 11nmcl 22230 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
228, 20, 21syl2anc 691 . . . . . . 7 (𝜑 → (𝑁𝐵) ∈ ℝ)
2318rpred 11748 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2422, 23readdcld 9948 . . . . . 6 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
25 0red 9920 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
2610, 11nmge0 22231 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
278, 20, 26syl2anc 691 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝐵))
2822, 18ltaddrpd 11781 . . . . . . 7 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
2925, 22, 24, 27, 28lelttrd 10074 . . . . . 6 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
3024, 29elrpd 11745 . . . . 5 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ+)
313, 30rpdivcld 11765 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)) ∈ ℝ+)
3219, 31syl5eqel 2692 . . 3 (𝜑𝑈 ∈ ℝ+)
3318, 32ifcld 4081 . 2 (𝜑 → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
34 ipcn.h . . . . 5 , = (·𝑖𝑊)
35 ipcn.d . . . . 5 𝐷 = (dist‘𝑊)
364adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ ℂPreHil)
379adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐴𝑉)
3820adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐵𝑉)
392adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑅 ∈ ℝ+)
40 simprll 798 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑥𝑉)
41 simprlr 799 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑦𝑉)
428adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmGrp)
43 ngpms 22214 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
4442, 43syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
4510, 35mscl 22076 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑥𝑉) → (𝐴𝐷𝑥) ∈ ℝ)
4644, 37, 40, 45syl3anc 1318 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) ∈ ℝ)
4733adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
4847rpred 11748 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ)
4932rpred 11748 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5049adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ)
51 simprrl 800 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈))
5223adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ)
53 min2 11895 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5452, 50, 53syl2anc 691 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5546, 48, 50, 51, 54ltletrd 10076 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < 𝑈)
568, 43syl 17 . . . . . . . 8 (𝜑𝑊 ∈ MetSp)
5756adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
5810, 35mscl 22076 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑦𝑉) → (𝐵𝐷𝑦) ∈ ℝ)
5957, 38, 41, 58syl3anc 1318 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) ∈ ℝ)
60 simprrr 801 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))
61 min1 11894 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6252, 50, 61syl2anc 691 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6359, 48, 52, 60, 62ltletrd 10076 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < 𝑇)
6410, 34, 35, 11, 1, 19, 36, 37, 38, 39, 40, 41, 55, 63ipcnlem2 22851 . . . 4 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)
6564expr 641 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
6665ralrimivva 2954 . 2 (𝜑 → ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
67 breq2 4587 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐴𝐷𝑥) < 𝑟 ↔ (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈)))
68 breq2 4587 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐵𝐷𝑦) < 𝑟 ↔ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))
6967, 68anbi12d 743 . . . . 5 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) ↔ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))))
7069imbi1d 330 . . . 4 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
71702ralbidv 2972 . . 3 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
7271rspcev 3282 . 2 ((if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
7333, 66, 72syl2anc 691 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  ifcif 4036   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  2c2 10947  ℝ+crp 11708  abscabs 13822  Basecbs 15695  ·𝑖cip 15773  distcds 15777  MetSpcmt 21933  normcnm 22191  NrmGrpcngp 22192  NrmModcnlm 22195  ℂPreHilccph 22774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-topgen 15927  df-xrs 15985  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-staf 18668  df-srng 18669  df-lmod 18688  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-phl 19790  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-tng 22199  df-nlm 22201  df-clm 22671  df-cph 22776  df-tch 22777 This theorem is referenced by:  ipcn  22853
 Copyright terms: Public domain W3C validator