Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem4 Structured version   Visualization version   GIF version

Theorem heiborlem4 32783
 Description: Lemma for heibor 32790. Using the function 𝑇 constructed in heiborlem3 32782, construct an infinite path in 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
Assertion
Ref Expression
heiborlem4 ((𝜑𝐴 ∈ ℕ0) → (𝑆𝐴)𝐺𝐴)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝑢,𝑛,𝐹,𝑥,𝑦   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐴(𝑧,𝑣,𝑢,𝑚)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝑥 = 0 → (𝑆𝑥) = (𝑆‘0))
2 id 22 . . . . 5 (𝑥 = 0 → 𝑥 = 0)
31, 2breq12d 4596 . . . 4 (𝑥 = 0 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆‘0)𝐺0))
43imbi2d 329 . . 3 (𝑥 = 0 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆‘0)𝐺0)))
5 fveq2 6103 . . . . 5 (𝑥 = 𝑘 → (𝑆𝑥) = (𝑆𝑘))
6 id 22 . . . . 5 (𝑥 = 𝑘𝑥 = 𝑘)
75, 6breq12d 4596 . . . 4 (𝑥 = 𝑘 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆𝑘)𝐺𝑘))
87imbi2d 329 . . 3 (𝑥 = 𝑘 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆𝑘)𝐺𝑘)))
9 fveq2 6103 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑆𝑥) = (𝑆‘(𝑘 + 1)))
10 id 22 . . . . 5 (𝑥 = (𝑘 + 1) → 𝑥 = (𝑘 + 1))
119, 10breq12d 4596 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
1211imbi2d 329 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
13 fveq2 6103 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
14 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
1513, 14breq12d 4596 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆𝐴)𝐺𝐴))
1615imbi2d 329 . . 3 (𝑥 = 𝐴 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆𝐴)𝐺𝐴)))
17 heibor.11 . . . . . . 7 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
1817fveq1i 6104 . . . . . 6 (𝑆‘0) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0)
19 0z 11265 . . . . . . 7 0 ∈ ℤ
20 seq1 12676 . . . . . . 7 (0 ∈ ℤ → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0))
2119, 20ax-mp 5 . . . . . 6 (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0)
2218, 21eqtri 2632 . . . . 5 (𝑆‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0)
23 0nn0 11184 . . . . . 6 0 ∈ ℕ0
24 heibor.10 . . . . . . 7 (𝜑𝐶𝐺0)
25 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
2625relopabi 5167 . . . . . . . 8 Rel 𝐺
2726brrelexi 5082 . . . . . . 7 (𝐶𝐺0 → 𝐶 ∈ V)
2824, 27syl 17 . . . . . 6 (𝜑𝐶 ∈ V)
29 iftrue 4042 . . . . . . 7 (𝑚 = 0 → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = 𝐶)
30 eqid 2610 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))
3129, 30fvmptg 6189 . . . . . 6 ((0 ∈ ℕ0𝐶 ∈ V) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0) = 𝐶)
3223, 28, 31sylancr 694 . . . . 5 (𝜑 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0) = 𝐶)
3322, 32syl5eq 2656 . . . 4 (𝜑 → (𝑆‘0) = 𝐶)
3433, 24eqbrtrd 4605 . . 3 (𝜑 → (𝑆‘0)𝐺0)
35 df-br 4584 . . . . . 6 ((𝑆𝑘)𝐺𝑘 ↔ ⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺)
36 heibor.9 . . . . . . 7 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
37 fveq2 6103 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩))
38 df-ov 6552 . . . . . . . . . . 11 ((𝑆𝑘)𝑇𝑘) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩)
3937, 38syl6eqr 2662 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = ((𝑆𝑘)𝑇𝑘))
40 fvex 6113 . . . . . . . . . . . 12 (𝑆𝑘) ∈ V
41 vex 3176 . . . . . . . . . . . 12 𝑘 ∈ V
4240, 41op2ndd 7070 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (2nd𝑥) = 𝑘)
4342oveq1d 6564 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((2nd𝑥) + 1) = (𝑘 + 1))
4439, 43breq12d 4596 . . . . . . . . 9 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐺((2nd𝑥) + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
45 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩))
46 df-ov 6552 . . . . . . . . . . . 12 ((𝑆𝑘)𝐵𝑘) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩)
4745, 46syl6eqr 2662 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = ((𝑆𝑘)𝐵𝑘))
4839, 43oveq12d 6567 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐵((2nd𝑥) + 1)) = (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)))
4947, 48ineq12d 3777 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) = (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))))
5049eleq1d 2672 . . . . . . . . 9 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
5144, 50anbi12d 743 . . . . . . . 8 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5251rspccv 3279 . . . . . . 7 (∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5336, 52syl 17 . . . . . 6 (𝜑 → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5435, 53syl5bi 231 . . . . 5 (𝜑 → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
55 seqp1 12678 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
56 nn0uz 11598 . . . . . . . . . . 11 0 = (ℤ‘0)
5755, 56eleq2s 2706 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
5817fveq1i 6104 . . . . . . . . . 10 (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1))
5917fveq1i 6104 . . . . . . . . . . 11 (𝑆𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)
6059oveq1i 6559 . . . . . . . . . 10 ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))
6157, 58, 603eqtr4g 2669 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
62 peano2nn0 11210 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
63 nn0p1nn 11209 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
64 nnne0 10930 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝑘 + 1) ≠ 0)
6564neneqd 2787 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → ¬ (𝑘 + 1) = 0)
66 iffalse 4045 . . . . . . . . . . . . . 14 (¬ (𝑘 + 1) = 0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
6763, 65, 663syl 18 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
68 ovex 6577 . . . . . . . . . . . . 13 ((𝑘 + 1) − 1) ∈ V
6967, 68syl6eqel 2696 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V)
70 eqeq1 2614 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0))
71 oveq1 6556 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1))
7270, 71ifbieq2d 4061 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
7372, 30fvmptg 6189 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℕ0 ∧ if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
7462, 69, 73syl2anc 691 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
75 nn0cn 11179 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
76 ax-1cn 9873 . . . . . . . . . . . 12 1 ∈ ℂ
77 pncan 10166 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
7875, 76, 77sylancl 693 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑘 + 1) − 1) = 𝑘)
7974, 67, 783eqtrd 2648 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘)
8079oveq2d 6565 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆𝑘)𝑇𝑘))
8161, 80eqtrd 2644 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
8281breq1d 4593 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
8382biimprd 237 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
8483adantrd 483 . . . . 5 (𝑘 ∈ ℕ0 → ((((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
8554, 84syl9r 76 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((𝑆𝑘)𝐺𝑘 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
8685a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (𝑆𝑘)𝐺𝑘) → (𝜑 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
874, 8, 12, 16, 34, 86nn0ind 11348 . 2 (𝐴 ∈ ℕ0 → (𝜑 → (𝑆𝐴)𝐺𝐴))
8887impcom 445 1 ((𝜑𝐴 ∈ ℕ0) → (𝑆𝐴)𝐺𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {cab 2596  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ifcif 4036  𝒫 cpw 4108  ⟨cop 4131  ∪ cuni 4372  ∪ ciun 4455   class class class wbr 4583  {copab 4642   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  2nd c2nd 7058  Fincfn 7841  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  seqcseq 12663  ↑cexp 12722  ballcbl 19554  MetOpencmopn 19557  CMetcms 22860 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664 This theorem is referenced by:  heiborlem5  32784  heiborlem6  32785  heiborlem8  32787
 Copyright terms: Public domain W3C validator