Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem3 Structured version   Visualization version   GIF version

Theorem heiborlem3 32782
Description: Lemma for heibor 32790. Using countable choice ax-cc 9140, we have fixed in advance a collection of finite 2↑-𝑛 nets (𝐹𝑛) for 𝑋 (note that an 𝑟-net is a set of points in 𝑋 whose 𝑟 -balls cover 𝑋). The set 𝐺 is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set 𝐾). If the theorem was false, then 𝑋 would be in 𝐾, and so some ball at each level would also be in 𝐾. But we can say more than this; given a ball (𝑦𝐵𝑛) on level 𝑛, since level 𝑛 + 1 covers the space and thus also (𝑦𝐵𝑛), using heiborlem1 32780 there is a ball on the next level whose intersection with (𝑦𝐵𝑛) also has no finite subcover. Now since the set 𝐺 is a countable union of finite sets, it is countable (which needs ax-cc 9140 via iunctb 9275), and so we can apply ax-cc 9140 to 𝐺 directly to get a function from 𝐺 to itself, which points from each ball in 𝐾 to a ball on the next level in 𝐾, and such that the intersection between these balls is also in 𝐾. (Contributed by Jeff Madsen, 18-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
Assertion
Ref Expression
heiborlem3 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝑔,𝐺   𝜑,𝑔,𝑥   𝑔,𝑚,𝑛,𝑢,𝑣,𝑦,𝑧,𝐷,𝑥   𝐵,𝑔,𝑛,𝑢,𝑣,𝑦   𝑔,𝐽,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑔,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝑋,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝐾,𝑛,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑔,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nn0ex 11175 . . . . . 6 0 ∈ V
2 fvex 6113 . . . . . . 7 (𝐹𝑡) ∈ V
3 snex 4835 . . . . . . 7 {𝑡} ∈ V
42, 3xpex 6860 . . . . . 6 ((𝐹𝑡) × {𝑡}) ∈ V
51, 4iunex 7039 . . . . 5 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V
6 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
76relopabi 5167 . . . . . . . 8 Rel 𝐺
8 1st2nd 7105 . . . . . . . 8 ((Rel 𝐺𝑥𝐺) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
97, 8mpan 702 . . . . . . 7 (𝑥𝐺𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
109eleq1d 2672 . . . . . . . . . . 11 (𝑥𝐺 → (𝑥𝐺 ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺))
11 df-br 4584 . . . . . . . . . . 11 ((1st𝑥)𝐺(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺)
1210, 11syl6bbr 277 . . . . . . . . . 10 (𝑥𝐺 → (𝑥𝐺 ↔ (1st𝑥)𝐺(2nd𝑥)))
13 heibor.1 . . . . . . . . . . 11 𝐽 = (MetOpen‘𝐷)
14 heibor.3 . . . . . . . . . . 11 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
15 fvex 6113 . . . . . . . . . . 11 (1st𝑥) ∈ V
16 fvex 6113 . . . . . . . . . . 11 (2nd𝑥) ∈ V
1713, 14, 6, 15, 16heiborlem2 32781 . . . . . . . . . 10 ((1st𝑥)𝐺(2nd𝑥) ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
1812, 17syl6bb 275 . . . . . . . . 9 (𝑥𝐺 → (𝑥𝐺 ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)))
1918ibi 255 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
2016snid 4155 . . . . . . . . . . . 12 (2nd𝑥) ∈ {(2nd𝑥)}
21 opelxp 5070 . . . . . . . . . . . 12 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ ((1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ (2nd𝑥) ∈ {(2nd𝑥)}))
2220, 21mpbiran2 956 . . . . . . . . . . 11 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
23 fveq2 6103 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → (𝐹𝑡) = (𝐹‘(2nd𝑥)))
24 sneq 4135 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → {𝑡} = {(2nd𝑥)})
2523, 24xpeq12d 5064 . . . . . . . . . . . . 13 (𝑡 = (2nd𝑥) → ((𝐹𝑡) × {𝑡}) = ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}))
2625eleq2d 2673 . . . . . . . . . . . 12 (𝑡 = (2nd𝑥) → (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})))
2726rspcev 3282 . . . . . . . . . . 11 (((2nd𝑥) ∈ ℕ0 ∧ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
2822, 27sylan2br 492 . . . . . . . . . 10 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
29 eliun 4460 . . . . . . . . . 10 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ↔ ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
3028, 29sylibr 223 . . . . . . . . 9 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
31303adant3 1074 . . . . . . . 8 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3219, 31syl 17 . . . . . . 7 (𝑥𝐺 → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
339, 32eqeltrd 2688 . . . . . 6 (𝑥𝐺𝑥 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3433ssriv 3572 . . . . 5 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
35 ssdomg 7887 . . . . 5 ( 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V → (𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) → 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})))
365, 34, 35mp2 9 . . . 4 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
37 nn0ennn 12640 . . . . . . 7 0 ≈ ℕ
38 nnenom 12641 . . . . . . 7 ℕ ≈ ω
3937, 38entri 7896 . . . . . 6 0 ≈ ω
40 endom 7868 . . . . . 6 (ℕ0 ≈ ω → ℕ0 ≼ ω)
4139, 40ax-mp 5 . . . . 5 0 ≼ ω
42 vex 3176 . . . . . . . 8 𝑡 ∈ V
432, 42xpsnen 7929 . . . . . . 7 ((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡)
44 inss2 3796 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ Fin
45 heibor.7 . . . . . . . . . 10 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
4645ffvelrnda 6267 . . . . . . . . 9 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ (𝒫 𝑋 ∩ Fin))
4744, 46sseldi 3566 . . . . . . . 8 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ Fin)
48 isfinite 8432 . . . . . . . . 9 ((𝐹𝑡) ∈ Fin ↔ (𝐹𝑡) ≺ ω)
49 sdomdom 7869 . . . . . . . . 9 ((𝐹𝑡) ≺ ω → (𝐹𝑡) ≼ ω)
5048, 49sylbi 206 . . . . . . . 8 ((𝐹𝑡) ∈ Fin → (𝐹𝑡) ≼ ω)
5147, 50syl 17 . . . . . . 7 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ≼ ω)
52 endomtr 7900 . . . . . . 7 ((((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡) ∧ (𝐹𝑡) ≼ ω) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5343, 51, 52sylancr 694 . . . . . 6 ((𝜑𝑡 ∈ ℕ0) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5453ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
55 iunctb 9275 . . . . 5 ((ℕ0 ≼ ω ∧ ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
5641, 54, 55sylancr 694 . . . 4 (𝜑 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
57 domtr 7895 . . . 4 ((𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∧ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝐺 ≼ ω)
5836, 56, 57sylancr 694 . . 3 (𝜑𝐺 ≼ ω)
5919simp1d 1066 . . . . . . . . 9 (𝑥𝐺 → (2nd𝑥) ∈ ℕ0)
60 peano2nn0 11210 . . . . . . . . 9 ((2nd𝑥) ∈ ℕ0 → ((2nd𝑥) + 1) ∈ ℕ0)
6159, 60syl 17 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) + 1) ∈ ℕ0)
62 ffvelrn 6265 . . . . . . . 8 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6345, 61, 62syl2an 493 . . . . . . 7 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6444, 63sseldi 3566 . . . . . 6 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ Fin)
65 iunin2 4520 . . . . . . . 8 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
66 heibor.8 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
67 oveq1 6556 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → (𝑦𝐵𝑛) = (𝑡𝐵𝑛))
6867cbviunv 4495 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛)
69 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑛 = ((2nd𝑥) + 1) → (𝐹𝑛) = (𝐹‘((2nd𝑥) + 1)))
7069iuneq1d 4481 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
7168, 70syl5eq 2656 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
72 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → (𝑡𝐵𝑛) = (𝑡𝐵((2nd𝑥) + 1)))
7372iuneq2d 4483 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7471, 73eqtrd 2644 . . . . . . . . . . . . 13 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7574eqeq2d 2620 . . . . . . . . . . . 12 (𝑛 = ((2nd𝑥) + 1) → (𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
7675rspccva 3281 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7766, 61, 76syl2an 493 . . . . . . . . . 10 ((𝜑𝑥𝐺) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7877ineq2d 3776 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
799fveq2d 6107 . . . . . . . . . . . . . 14 (𝑥𝐺 → (𝐵𝑥) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩))
80 df-ov 6552 . . . . . . . . . . . . . 14 ((1st𝑥)𝐵(2nd𝑥)) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩)
8179, 80syl6eqr 2662 . . . . . . . . . . . . 13 (𝑥𝐺 → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
8281adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
83 inss1 3795 . . . . . . . . . . . . . . . 16 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
84 ffvelrn 6265 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (2nd𝑥) ∈ ℕ0) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8545, 59, 84syl2an 493 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8683, 85sseldi 3566 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ 𝒫 𝑋)
8786elpwid 4118 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ⊆ 𝑋)
8819simp2d 1067 . . . . . . . . . . . . . . 15 (𝑥𝐺 → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
8988adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
9087, 89sseldd 3569 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1st𝑥) ∈ 𝑋)
9159adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (2nd𝑥) ∈ ℕ0)
92 oveq1 6556 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑥) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))))
93 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑚 = (2nd𝑥) → (2↑𝑚) = (2↑(2nd𝑥)))
9493oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑚 = (2nd𝑥) → (1 / (2↑𝑚)) = (1 / (2↑(2nd𝑥))))
9594oveq2d 6565 . . . . . . . . . . . . . 14 (𝑚 = (2nd𝑥) → ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
96 heibor.5 . . . . . . . . . . . . . 14 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
97 ovex 6577 . . . . . . . . . . . . . 14 ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ∈ V
9892, 95, 96, 97ovmpt2 6694 . . . . . . . . . . . . 13 (((1st𝑥) ∈ 𝑋 ∧ (2nd𝑥) ∈ ℕ0) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
9990, 91, 98syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
10082, 99eqtrd 2644 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
101 heibor.6 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (CMet‘𝑋))
102 cmetmet 22892 . . . . . . . . . . . . . . 15 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
103101, 102syl 17 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ (Met‘𝑋))
104 metxmet 21949 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
105103, 104syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (∞Met‘𝑋))
106105adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → 𝐷 ∈ (∞Met‘𝑋))
107 2nn 11062 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
108 nnexpcl 12735 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (2nd𝑥) ∈ ℕ0) → (2↑(2nd𝑥)) ∈ ℕ)
109107, 91, 108sylancr 694 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℕ)
110109nnrpd 11746 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℝ+)
111110rpreccld 11758 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ+)
112111rpxrd 11749 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ*)
113 blssm 22033 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st𝑥) ∈ 𝑋 ∧ (1 / (2↑(2nd𝑥))) ∈ ℝ*) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
114106, 90, 112, 113syl3anc 1318 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
115100, 114eqsstrd 3602 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑋)
116 df-ss 3554 . . . . . . . . . 10 ((𝐵𝑥) ⊆ 𝑋 ↔ ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
117115, 116sylib 207 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
11878, 117eqtr3d 2646 . . . . . . . 8 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
11965, 118syl5eq 2656 . . . . . . 7 ((𝜑𝑥𝐺) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
120 eqimss2 3621 . . . . . . 7 ( 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
121119, 120syl 17 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
12219simp3d 1068 . . . . . . . 8 (𝑥𝐺 → ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)
12381, 122eqeltrd 2688 . . . . . . 7 (𝑥𝐺 → (𝐵𝑥) ∈ 𝐾)
124123adantl 481 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ∈ 𝐾)
125 fvex 6113 . . . . . . . 8 (𝐵𝑥) ∈ V
126125inex1 4727 . . . . . . 7 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ V
12713, 14, 126heiborlem1 32780 . . . . . 6 (((𝐹‘((2nd𝑥) + 1)) ∈ Fin ∧ (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∧ (𝐵𝑥) ∈ 𝐾) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12864, 121, 124, 127syl3anc 1318 . . . . 5 ((𝜑𝑥𝐺) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12983, 63sseldi 3566 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ 𝒫 𝑋)
130129elpwid 4118 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝑋)
13113mopnuni 22056 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
132105, 131syl 17 . . . . . . . . . . . 12 (𝜑𝑋 = 𝐽)
133132adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → 𝑋 = 𝐽)
134130, 133sseqtrd 3604 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝐽)
135134sselda 3568 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))) → 𝑡 𝐽)
136135adantrr 749 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡 𝐽)
13761adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐺) → ((2nd𝑥) + 1) ∈ ℕ0)
138 id 22 . . . . . . . . . 10 (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)))
139 snfi 7923 . . . . . . . . . . . 12 {(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin
140 inss2 3796 . . . . . . . . . . . . 13 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ (𝑡𝐵((2nd𝑥) + 1))
141 ovex 6577 . . . . . . . . . . . . . . 15 (𝑡𝐵((2nd𝑥) + 1)) ∈ V
142141unisn 4387 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = (𝑡𝐵((2nd𝑥) + 1))
143 uniiun 4509 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
144142, 143eqtr3i 2634 . . . . . . . . . . . . 13 (𝑡𝐵((2nd𝑥) + 1)) = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
145140, 144sseqtri 3600 . . . . . . . . . . . 12 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
146 vex 3176 . . . . . . . . . . . . 13 𝑔 ∈ V
14713, 14, 146heiborlem1 32780 . . . . . . . . . . . 12 (({(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔 ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
148139, 145, 147mp3an12 1406 . . . . . . . . . . 11 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
149 eleq1 2676 . . . . . . . . . . . 12 (𝑔 = (𝑡𝐵((2nd𝑥) + 1)) → (𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
150141, 149rexsn 4170 . . . . . . . . . . 11 (∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
151148, 150sylib 207 . . . . . . . . . 10 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
152 ovex 6577 . . . . . . . . . . . 12 ((2nd𝑥) + 1) ∈ V
15313, 14, 6, 42, 152heiborlem2 32781 . . . . . . . . . . 11 (𝑡𝐺((2nd𝑥) + 1) ↔ (((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
154153biimpri 217 . . . . . . . . . 10 ((((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
155137, 138, 151, 154syl3an 1360 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
1561553expb 1258 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡𝐺((2nd𝑥) + 1))
157 simprr 792 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
158136, 156, 157jca32 556 . . . . . . 7 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
159158ex 449 . . . . . 6 ((𝜑𝑥𝐺) → ((𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))))
160159reximdv2 2997 . . . . 5 ((𝜑𝑥𝐺) → (∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
161128, 160mpd 15 . . . 4 ((𝜑𝑥𝐺) → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
162161ralrimiva 2949 . . 3 (𝜑 → ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
163 fvex 6113 . . . . . 6 (MetOpen‘𝐷) ∈ V
16413, 163eqeltri 2684 . . . . 5 𝐽 ∈ V
165164uniex 6851 . . . 4 𝐽 ∈ V
166 breq1 4586 . . . . 5 (𝑡 = (𝑔𝑥) → (𝑡𝐺((2nd𝑥) + 1) ↔ (𝑔𝑥)𝐺((2nd𝑥) + 1)))
167 oveq1 6556 . . . . . . 7 (𝑡 = (𝑔𝑥) → (𝑡𝐵((2nd𝑥) + 1)) = ((𝑔𝑥)𝐵((2nd𝑥) + 1)))
168167ineq2d 3776 . . . . . 6 (𝑡 = (𝑔𝑥) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))))
169168eleq1d 2672 . . . . 5 (𝑡 = (𝑔𝑥) → (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
170166, 169anbi12d 743 . . . 4 (𝑡 = (𝑔𝑥) → ((𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
171165, 170axcc4dom 9146 . . 3 ((𝐺 ≼ ω ∧ ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
17258, 162, 171syl2anc 691 . 2 (𝜑 → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
173 exsimpr 1784 . 2 (∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
174172, 173syl 17 1 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108  {csn 4125  cop 4131   cuni 4372   ciun 4455   class class class wbr 4583  {copab 4642   × cxp 5036  Rel wrel 5043  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  ωcom 6957  1st c1st 7057  2nd c2nd 7058  cen 7838  cdom 7839  csdm 7840  Fincfn 7841  1c1 9816   + caddc 9818  *cxr 9952   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cexp 12722  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  MetOpencmopn 19557  CMetcms 22860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-seq 12664  df-exp 12723  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmet 22863
This theorem is referenced by:  heiborlem10  32789
  Copyright terms: Public domain W3C validator