Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem5 Structured version   Visualization version   GIF version

Theorem heiborlem5 32784
Description: Lemma for heibor 32790. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 22914. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem5 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem5
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11176 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 inss1 3795 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
3 heibor.7 . . . . . . . . . 10 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
43ffvelrnda 6267 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ (𝒫 𝑋 ∩ Fin))
52, 4sseldi 3566 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝒫 𝑋)
65elpwid 4118 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ⊆ 𝑋)
7 heibor.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
8 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
9 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
10 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
11 heibor.6 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
12 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
13 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
14 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
15 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
167, 8, 9, 10, 11, 3, 12, 13, 14, 15heiborlem4 32783 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘)𝐺𝑘)
17 fvex 6113 . . . . . . . . . 10 (𝑆𝑘) ∈ V
18 vex 3176 . . . . . . . . . 10 𝑘 ∈ V
197, 8, 9, 17, 18heiborlem2 32781 . . . . . . . . 9 ((𝑆𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆𝑘) ∈ (𝐹𝑘) ∧ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
2019simp2bi 1070 . . . . . . . 8 ((𝑆𝑘)𝐺𝑘 → (𝑆𝑘) ∈ (𝐹𝑘))
2116, 20syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ (𝐹𝑘))
226, 21sseldd 3569 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ 𝑋)
231, 22sylan2 490 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ 𝑋)
2423ralrimiva 2949 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ∈ 𝑋)
25 fveq2 6103 . . . . . 6 (𝑘 = 𝑛 → (𝑆𝑘) = (𝑆𝑛))
2625eleq1d 2672 . . . . 5 (𝑘 = 𝑛 → ((𝑆𝑘) ∈ 𝑋 ↔ (𝑆𝑛) ∈ 𝑋))
2726cbvralv 3147 . . . 4 (∀𝑘 ∈ ℕ (𝑆𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋)
2824, 27sylib 207 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋)
29 3re 10971 . . . . . . 7 3 ∈ ℝ
30 3pos 10991 . . . . . . 7 0 < 3
3129, 30elrpii 11711 . . . . . 6 3 ∈ ℝ+
32 2nn 11062 . . . . . . . 8 2 ∈ ℕ
33 nnnn0 11176 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
34 nnexpcl 12735 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
3532, 33, 34sylancr 694 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
3635nnrpd 11746 . . . . . 6 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
37 rpdivcl 11732 . . . . . 6 ((3 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (3 / (2↑𝑛)) ∈ ℝ+)
3831, 36, 37sylancr 694 . . . . 5 (𝑛 ∈ ℕ → (3 / (2↑𝑛)) ∈ ℝ+)
39 opelxpi 5072 . . . . . 6 (((𝑆𝑛) ∈ 𝑋 ∧ (3 / (2↑𝑛)) ∈ ℝ+) → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
4039expcom 450 . . . . 5 ((3 / (2↑𝑛)) ∈ ℝ+ → ((𝑆𝑛) ∈ 𝑋 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+)))
4138, 40syl 17 . . . 4 (𝑛 ∈ ℕ → ((𝑆𝑛) ∈ 𝑋 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+)))
4241ralimia 2934 . . 3 (∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋 → ∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
4328, 42syl 17 . 2 (𝜑 → ∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
44 heibor.12 . . 3 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
4544fmpt 6289 . 2 (∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+) ↔ 𝑀:ℕ⟶(𝑋 × ℝ+))
4643, 45sylib 207 1 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  cin 3539  wss 3540  ifcif 4036  𝒫 cpw 4108  cop 4131   cuni 4372   ciun 4455   class class class wbr 4583  {copab 4642  cmpt 4643   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  2nd c2nd 7058  Fincfn 7841  0cc0 9815  1c1 9816   + caddc 9818  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  0cn0 11169  +crp 11708  seqcseq 12663  cexp 12722  ballcbl 19554  MetOpencmopn 19557  CMetcms 22860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723
This theorem is referenced by:  heiborlem8  32787  heiborlem9  32788
  Copyright terms: Public domain W3C validator