Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem9 | Structured version Visualization version GIF version |
Description: Lemma for heibor 32790. Discharge the hypotheses of heiborlem8 32787 by applying caubl 22914 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.) |
Ref | Expression |
---|---|
heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
heibor.13 | ⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
heiborlem9.14 | ⊢ (𝜑 → ∪ 𝑈 = 𝑋) |
Ref | Expression |
---|---|
heiborlem9 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | heibor.6 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
2 | cmetmet 22892 | . . . . . . 7 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
3 | metxmet 21949 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
4 | 1, 2, 3 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
5 | heibor.1 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
6 | 5 | mopntopon 22054 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
8 | heibor.3 | . . . . . . . . 9 ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | |
9 | heibor.4 | . . . . . . . . 9 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
10 | heibor.5 | . . . . . . . . 9 ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | |
11 | heibor.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | |
12 | heibor.8 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | |
13 | heibor.9 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | |
14 | heibor.10 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶𝐺0) | |
15 | heibor.11 | . . . . . . . . 9 ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | |
16 | heibor.12 | . . . . . . . . 9 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
17 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem5 32784 | . . . . . . . 8 ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
18 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem6 32785 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |
19 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem7 32786 | . . . . . . . . 9 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
20 | 19 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟) |
21 | 4, 17, 18, 20 | caubl 22914 | . . . . . . 7 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ (Cau‘𝐷)) |
22 | 5 | cmetcau 22895 | . . . . . . 7 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (1st ∘ 𝑀) ∈ (Cau‘𝐷)) → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
23 | 1, 21, 22 | syl2anc 691 | . . . . . 6 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
24 | 5 | methaus 22135 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
25 | 4, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Haus) |
26 | lmfun 20995 | . . . . . . 7 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
27 | funfvbrb 6238 | . . . . . . 7 ⊢ (Fun (⇝𝑡‘𝐽) → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) | |
28 | 25, 26, 27 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) |
29 | 23, 28 | mpbid 221 | . . . . 5 ⊢ (𝜑 → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
30 | lmcl 20911 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) | |
31 | 7, 29, 30 | syl2anc 691 | . . . 4 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) |
32 | heiborlem9.14 | . . . 4 ⊢ (𝜑 → ∪ 𝑈 = 𝑋) | |
33 | 31, 32 | eleqtrrd 2691 | . . 3 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈) |
34 | eluni2 4376 | . . 3 ⊢ (((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈 ↔ ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
35 | 33, 34 | sylib 207 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) |
36 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋)) |
37 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
38 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
39 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
40 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐶𝐺0) |
41 | heibor.13 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ 𝐽) | |
42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑈 ⊆ 𝐽) |
43 | fvex 6113 | . . 3 ⊢ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ V | |
44 | simprr 792 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
45 | simprl 790 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑡 ∈ 𝑈) | |
46 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
47 | 5, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46 | heiborlem8 32787 | . 2 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝜓) |
48 | 35, 47 | rexlimddv 3017 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 {cab 2596 ∀wral 2896 ∃wrex 2897 ∩ cin 3539 ⊆ wss 3540 ifcif 4036 𝒫 cpw 4108 〈cop 4131 ∪ cuni 4372 ∪ ciun 4455 class class class wbr 4583 {copab 4642 ↦ cmpt 4643 dom cdm 5038 ∘ ccom 5042 Fun wfun 5798 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 1st c1st 7057 2nd c2nd 7058 Fincfn 7841 0cc0 9815 1c1 9816 + caddc 9818 < clt 9953 − cmin 10145 / cdiv 10563 ℕcn 10897 2c2 10947 3c3 10948 ℕ0cn0 11169 ℝ+crp 11708 seqcseq 12663 ↑cexp 12722 ∞Metcxmt 19552 Metcme 19553 ballcbl 19554 MetOpencmopn 19557 TopOnctopon 20518 ⇝𝑡clm 20840 Hauscha 20922 Caucca 22859 CMetcms 22860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ico 12052 df-icc 12053 df-fl 12455 df-seq 12664 df-exp 12723 df-rest 15906 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-fbas 19564 df-fg 19565 df-top 20521 df-bases 20522 df-topon 20523 df-cld 20633 df-ntr 20634 df-cls 20635 df-nei 20712 df-lm 20843 df-haus 20929 df-fil 21460 df-fm 21552 df-flim 21553 df-flf 21554 df-cfil 22861 df-cau 22862 df-cmet 22863 |
This theorem is referenced by: heiborlem10 32789 |
Copyright terms: Public domain | W3C validator |