Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem9 Structured version   Visualization version   GIF version

Theorem heiborlem9 32788
Description: Lemma for heibor 32790. Discharge the hypotheses of heiborlem8 32787 by applying caubl 22914 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
heibor.13 (𝜑𝑈𝐽)
heiborlem9.14 (𝜑 𝑈 = 𝑋)
Assertion
Ref Expression
heiborlem9 (𝜑𝜓)
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝜓,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝜓(𝑥,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem9
Dummy variables 𝑡 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.6 . . . . . . 7 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 22892 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
3 metxmet 21949 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
41, 2, 33syl 18 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 heibor.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
65mopntopon 22054 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
74, 6syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
9 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
10 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
11 heibor.7 . . . . . . . . 9 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
12 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
13 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
14 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
15 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
16 heibor.12 . . . . . . . . 9 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
175, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem5 32784 . . . . . . . 8 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
185, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem6 32785 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
195, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem7 32786 . . . . . . . . 9 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
2019a1i 11 . . . . . . . 8 (𝜑 → ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
214, 17, 18, 20caubl 22914 . . . . . . 7 (𝜑 → (1st𝑀) ∈ (Cau‘𝐷))
225cmetcau 22895 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (1st𝑀) ∈ (Cau‘𝐷)) → (1st𝑀) ∈ dom (⇝𝑡𝐽))
231, 21, 22syl2anc 691 . . . . . 6 (𝜑 → (1st𝑀) ∈ dom (⇝𝑡𝐽))
245methaus 22135 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
254, 24syl 17 . . . . . . 7 (𝜑𝐽 ∈ Haus)
26 lmfun 20995 . . . . . . 7 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
27 funfvbrb 6238 . . . . . . 7 (Fun (⇝𝑡𝐽) → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2825, 26, 273syl 18 . . . . . 6 (𝜑 → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2923, 28mpbid 221 . . . . 5 (𝜑 → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
30 lmcl 20911 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
317, 29, 30syl2anc 691 . . . 4 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
32 heiborlem9.14 . . . 4 (𝜑 𝑈 = 𝑋)
3331, 32eleqtrrd 2691 . . 3 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈)
34 eluni2 4376 . . 3 (((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈 ↔ ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
3533, 34sylib 207 . 2 (𝜑 → ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
361adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋))
3711adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
3812adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
3913adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
4014adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐶𝐺0)
41 heibor.13 . . . 4 (𝜑𝑈𝐽)
4241adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑈𝐽)
43 fvex 6113 . . 3 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ V
44 simprr 792 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
45 simprl 790 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑡𝑈)
4629adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
475, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46heiborlem8 32787 . 2 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝜓)
4835, 47rexlimddv 3017 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  cin 3539  wss 3540  ifcif 4036  𝒫 cpw 4108  cop 4131   cuni 4372   ciun 4455   class class class wbr 4583  {copab 4642  cmpt 4643  dom cdm 5038  ccom 5042  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Fincfn 7841  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  0cn0 11169  +crp 11708  seqcseq 12663  cexp 12722  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  MetOpencmopn 19557  TopOnctopon 20518  𝑡clm 20840  Hauscha 20922  Caucca 22859  CMetcms 22860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-icc 12053  df-fl 12455  df-seq 12664  df-exp 12723  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lm 20843  df-haus 20929  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-cfil 22861  df-cau 22862  df-cmet 22863
This theorem is referenced by:  heiborlem10  32789
  Copyright terms: Public domain W3C validator