Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem2 Structured version   Visualization version   GIF version

Theorem ftc1anclem2 32656
Description: Lemma for ftc1anc 32663- restriction of an integrable function to the absolute value of its real or imaginary part. (Contributed by Brendan Leahy, 19-Jun-2018.) (Revised by Brendan Leahy, 8-Aug-2018.)
Assertion
Ref Expression
ftc1anclem2 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
Distinct variable groups:   𝑡,𝐹   𝑡,𝐴   𝑡,𝐺

Proof of Theorem ftc1anclem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpri 4145 . . 3 (𝐺 ∈ {ℜ, ℑ} → (𝐺 = ℜ ∨ 𝐺 = ℑ))
2 fveq1 6102 . . . . . . . . . 10 (𝐺 = ℜ → (𝐺‘(𝐹𝑡)) = (ℜ‘(𝐹𝑡)))
32fveq2d 6107 . . . . . . . . 9 (𝐺 = ℜ → (abs‘(𝐺‘(𝐹𝑡))) = (abs‘(ℜ‘(𝐹𝑡))))
43ifeq1d 4054 . . . . . . . 8 (𝐺 = ℜ → if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0) = if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))
54mpteq2dv 4673 . . . . . . 7 (𝐺 = ℜ → (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0)))
65fveq2d 6107 . . . . . 6 (𝐺 = ℜ → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))))
76adantl 481 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))))
8 ffvelrn 6265 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
98recld 13782 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℜ‘(𝐹𝑡)) ∈ ℝ)
109adantlr 747 . . . . . . . . 9 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝑡𝐴) → (ℜ‘(𝐹𝑡)) ∈ ℝ)
11 simpl 472 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹:𝐴⟶ℂ)
1211feqmptd 6159 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
13 simpr 476 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 ∈ 𝐿1)
1412, 13eqeltrrd 2689 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (𝐹𝑡)) ∈ 𝐿1)
158iblcn 23371 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (𝐹𝑡)) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1)))
1615biimpa 500 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ (𝑡𝐴 ↦ (𝐹𝑡)) ∈ 𝐿1) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1))
1714, 16syldan 486 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1))
1817simpld 474 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1)
199recnd 9947 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℜ‘(𝐹𝑡)) ∈ ℂ)
20 eqidd 2611 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) = (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))))
21 absf 13925 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . . . . . . 13 (𝐹:𝐴⟶ℂ → abs:ℂ⟶ℝ)
2322feqmptd 6159 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
24 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = (ℜ‘(𝐹𝑡)) → (abs‘𝑥) = (abs‘(ℜ‘(𝐹𝑡))))
2519, 20, 23, 24fmptco 6303 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))))
2625adantr 480 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))))
27 eqid 2610 . . . . . . . . . . . . 13 (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) = (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))
289, 27fmptd 6292 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))):𝐴⟶ℝ)
2928adantr 480 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))):𝐴⟶ℝ)
30 iblmbf 23340 . . . . . . . . . . . . . . 15 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
3130adantl 481 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 ∈ MblFn)
3212, 31eqeltrrd 2689 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (𝐹𝑡)) ∈ MblFn)
338ismbfcn2 23212 . . . . . . . . . . . . . 14 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (𝐹𝑡)) ∈ MblFn ↔ ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn)))
3433biimpa 500 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℂ ∧ (𝑡𝐴 ↦ (𝐹𝑡)) ∈ MblFn) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn))
3532, 34syldan 486 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn))
3635simpld 474 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn)
37 ftc1anclem1 32655 . . . . . . . . . . 11 (((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))):𝐴⟶ℝ ∧ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn) → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) ∈ MblFn)
3829, 36, 37syl2anc 691 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) ∈ MblFn)
3926, 38eqeltrrd 2689 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn)
4010, 18, 39iblabsnc 32644 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ 𝐿1)
4119abscld 14023 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (abs‘(ℜ‘(𝐹𝑡))) ∈ ℝ)
4219absge0d 14031 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → 0 ≤ (abs‘(ℜ‘(𝐹𝑡))))
4341, 42iblpos 23365 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)))
4443adantr 480 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)))
4540, 44mpbid 221 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ))
4645simprd 478 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)
4746adantr 480 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)
487, 47eqeltrd 2688 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
49 fveq1 6102 . . . . . . . . . 10 (𝐺 = ℑ → (𝐺‘(𝐹𝑡)) = (ℑ‘(𝐹𝑡)))
5049fveq2d 6107 . . . . . . . . 9 (𝐺 = ℑ → (abs‘(𝐺‘(𝐹𝑡))) = (abs‘(ℑ‘(𝐹𝑡))))
5150ifeq1d 4054 . . . . . . . 8 (𝐺 = ℑ → if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0) = if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))
5251mpteq2dv 4673 . . . . . . 7 (𝐺 = ℑ → (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0)))
5352fveq2d 6107 . . . . . 6 (𝐺 = ℑ → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))))
5453adantl 481 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))))
558imcld 13783 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℑ‘(𝐹𝑡)) ∈ ℝ)
5655recnd 9947 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℑ‘(𝐹𝑡)) ∈ ℂ)
5756adantlr 747 . . . . . . . . 9 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝑡𝐴) → (ℑ‘(𝐹𝑡)) ∈ ℂ)
5817simprd 478 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1)
59 eqidd 2611 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) = (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))))
60 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = (ℑ‘(𝐹𝑡)) → (abs‘𝑥) = (abs‘(ℑ‘(𝐹𝑡))))
6156, 59, 23, 60fmptco 6303 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))))
6261adantr 480 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))))
63 eqid 2610 . . . . . . . . . . . . 13 (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) = (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))
6455, 63fmptd 6292 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))):𝐴⟶ℝ)
6564adantr 480 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))):𝐴⟶ℝ)
6635simprd 478 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn)
67 ftc1anclem1 32655 . . . . . . . . . . 11 (((𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))):𝐴⟶ℝ ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn) → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) ∈ MblFn)
6865, 66, 67syl2anc 691 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) ∈ MblFn)
6962, 68eqeltrrd 2689 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn)
7057, 58, 69iblabsnc 32644 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ 𝐿1)
7156abscld 14023 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (abs‘(ℑ‘(𝐹𝑡))) ∈ ℝ)
7256absge0d 14031 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → 0 ≤ (abs‘(ℑ‘(𝐹𝑡))))
7371, 72iblpos 23365 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)))
7473adantr 480 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)))
7570, 74mpbid 221 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ))
7675simprd 478 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
7776adantr 480 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
7854, 77eqeltrd 2688 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
7948, 78jaodan 822 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ (𝐺 = ℜ ∨ 𝐺 = ℑ)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
801, 79sylan2 490 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
81803impa 1251 1 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  ifcif 4036  {cpr 4127  cmpt 4643  ccom 5042  wf 5800  cfv 5804  cc 9813  cr 9814  0cc0 9815  cre 13685  cim 13686  abscabs 13822  MblFncmbf 23189  2citg2 23191  𝐿1cibl 23192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-0p 23243
This theorem is referenced by:  ftc1anclem8  32662
  Copyright terms: Public domain W3C validator