MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1eq Structured version   Visualization version   GIF version

Theorem elfz1eq 12223
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.)
Assertion
Ref Expression
elfz1eq (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)

Proof of Theorem elfz1eq
StepHypRef Expression
1 elfzle2 12216 . 2 (𝐾 ∈ (𝑁...𝑁) → 𝐾𝑁)
2 elfzle1 12215 . 2 (𝐾 ∈ (𝑁...𝑁) → 𝑁𝐾)
3 elfzelz 12213 . . 3 (𝐾 ∈ (𝑁...𝑁) → 𝐾 ∈ ℤ)
4 elfzel2 12211 . . 3 (𝐾 ∈ (𝑁...𝑁) → 𝑁 ∈ ℤ)
5 zre 11258 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
6 zre 11258 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
7 letri3 10002 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
85, 6, 7syl2an 493 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
93, 4, 8syl2anc 691 . 2 (𝐾 ∈ (𝑁...𝑁) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
101, 2, 9mpbir2and 959 1 (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cr 9814  cle 9954  cz 11254  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  fzsn  12254  fz1sbc  12285  fzm1  12289  bccl  12971  hashbc  13094  swrdccatin1  13334  sumsn  14319  climcnds  14422  prmind2  15236  3prm  15244  vdwlem8  15530  od1  17799  gex1  17829  frgpnabllem1  18099  ply1termlem  23763  coefv0  23808  coemulc  23815  logtayl  24206  leibpilem2  24468  chp1  24693  chtub  24737  2sqlem10  24953  dchrisum0flb  24999  ostth2lem2  25123  axlowdimlem16  25637  sdclem2  32708  sumsnd  38208  sumsnf  38636  fourierdlem20  39020
  Copyright terms: Public domain W3C validator