MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsn Structured version   Visualization version   GIF version

Theorem fzsn 12254
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzsn (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})

Proof of Theorem fzsn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfz1eq 12223 . . . 4 (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀)
2 elfz3 12222 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
3 eleq1 2676 . . . . 5 (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀)))
42, 3syl5ibrcom 236 . . . 4 (𝑀 ∈ ℤ → (𝑘 = 𝑀𝑘 ∈ (𝑀...𝑀)))
51, 4impbid2 215 . . 3 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀))
6 velsn 4141 . . 3 (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀)
75, 6syl6bbr 277 . 2 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀}))
87eqrdv 2608 1 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {csn 4125  (class class class)co 6549  cz 11254  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  fzsuc  12258  fzpred  12259  fzpr  12266  fzsuc2  12268  fz0sn  12308  fz0sn0fz1  12325  fzosn  12405  seqf1o  12704  hashsng  13020  sumsn  14319  fsum1  14320  fsumm1  14324  fsum1p  14326  prodsn  14531  fprod1  14532  prodsnf  14533  fprod1p  14537  fprodabs  14543  binomfallfac  14611  ef0lem  14648  fprodefsum  14664  phi1  15316  4sqlem19  15505  vdwlem8  15530  strle1  15800  gsumws1  17199  telgsumfzs  18209  srgbinom  18368  pmatcollpw3fi1lem1  20410  pmatcollpw3fi1  20412  imasdsf1olem  21988  voliunlem1  23125  ply1termlem  23763  pntpbnd1  25075  0spth  26101  eupa0  26501  iuninc  28761  fzspl  28938  esumfzf  29458  ballotlemfc0  29881  ballotlemfcc  29882  plymulx0  29950  signstf0  29971  subfac1  30414  subfacp1lem1  30415  subfacp1lem5  30420  subfacp1lem6  30421  cvmliftlem10  30530  fwddifn0  31441  poimirlem2  32581  poimirlem3  32582  poimirlem4  32583  poimirlem6  32585  poimirlem7  32586  poimirlem13  32592  poimirlem14  32593  poimirlem16  32595  poimirlem17  32596  poimirlem18  32597  poimirlem19  32598  poimirlem20  32599  poimirlem21  32600  poimirlem22  32601  poimirlem26  32605  poimirlem28  32607  poimirlem31  32610  poimirlem32  32611  sdclem1  32709  fdc  32711  trclfvdecomr  37039  k0004val0  37472  sumsnd  38208  fzdifsuc2  38466  sumsnf  38636  dvnmul  38833  stoweidlem17  38910  carageniuncllem1  39411  caratheodorylem1  39416  hoidmvlelem3  39487  fzopredsuc  39946  nnsum3primesprm  40206  0wlkOns1  41289  0spth-av  41294
  Copyright terms: Public domain W3C validator