Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflogeq Structured version   Visualization version   GIF version

Theorem eflogeq 24152
 Description: Solve an equation involving an exponential. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
eflogeq ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((exp‘𝐴) = 𝐵 ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem eflogeq
StepHypRef Expression
1 efcl 14652 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2 efne0 14666 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
31, 2logcld 24121 . . . . . . . 8 (𝐴 ∈ ℂ → (log‘(exp‘𝐴)) ∈ ℂ)
4 efsub 14669 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (log‘(exp‘𝐴)) ∈ ℂ) → (exp‘(𝐴 − (log‘(exp‘𝐴)))) = ((exp‘𝐴) / (exp‘(log‘(exp‘𝐴)))))
53, 4mpdan 699 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(𝐴 − (log‘(exp‘𝐴)))) = ((exp‘𝐴) / (exp‘(log‘(exp‘𝐴)))))
6 eflog 24127 . . . . . . . . 9 (((exp‘𝐴) ∈ ℂ ∧ (exp‘𝐴) ≠ 0) → (exp‘(log‘(exp‘𝐴))) = (exp‘𝐴))
71, 2, 6syl2anc 691 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(log‘(exp‘𝐴))) = (exp‘𝐴))
87oveq2d 6565 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘𝐴) / (exp‘(log‘(exp‘𝐴)))) = ((exp‘𝐴) / (exp‘𝐴)))
91, 2dividd 10678 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘𝐴) / (exp‘𝐴)) = 1)
105, 8, 93eqtrd 2648 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(𝐴 − (log‘(exp‘𝐴)))) = 1)
11 subcl 10159 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (log‘(exp‘𝐴)) ∈ ℂ) → (𝐴 − (log‘(exp‘𝐴))) ∈ ℂ)
123, 11mpdan 699 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − (log‘(exp‘𝐴))) ∈ ℂ)
13 efeq1 24079 . . . . . . 7 ((𝐴 − (log‘(exp‘𝐴))) ∈ ℂ → ((exp‘(𝐴 − (log‘(exp‘𝐴)))) = 1 ↔ ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) ∈ ℤ))
1412, 13syl 17 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(𝐴 − (log‘(exp‘𝐴)))) = 1 ↔ ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) ∈ ℤ))
1510, 14mpbid 221 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) ∈ ℤ)
16 ax-icn 9874 . . . . . . . . . 10 i ∈ ℂ
17 2cn 10968 . . . . . . . . . . 11 2 ∈ ℂ
18 picn 24015 . . . . . . . . . . 11 π ∈ ℂ
1917, 18mulcli 9924 . . . . . . . . . 10 (2 · π) ∈ ℂ
2016, 19mulcli 9924 . . . . . . . . 9 (i · (2 · π)) ∈ ℂ
2120a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → (i · (2 · π)) ∈ ℂ)
22 ine0 10344 . . . . . . . . . 10 i ≠ 0
23 2ne0 10990 . . . . . . . . . . 11 2 ≠ 0
24 pire 24014 . . . . . . . . . . . 12 π ∈ ℝ
25 pipos 24016 . . . . . . . . . . . 12 0 < π
2624, 25gt0ne0ii 10443 . . . . . . . . . . 11 π ≠ 0
2717, 18, 23, 26mulne0i 10549 . . . . . . . . . 10 (2 · π) ≠ 0
2816, 19, 22, 27mulne0i 10549 . . . . . . . . 9 (i · (2 · π)) ≠ 0
2928a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → (i · (2 · π)) ≠ 0)
3012, 21, 29divcan2d 10682 . . . . . . 7 (𝐴 ∈ ℂ → ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π)))) = (𝐴 − (log‘(exp‘𝐴))))
3130oveq2d 6565 . . . . . 6 (𝐴 ∈ ℂ → ((log‘(exp‘𝐴)) + ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))))) = ((log‘(exp‘𝐴)) + (𝐴 − (log‘(exp‘𝐴)))))
32 pncan3 10168 . . . . . . 7 (((log‘(exp‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((log‘(exp‘𝐴)) + (𝐴 − (log‘(exp‘𝐴)))) = 𝐴)
333, 32mpancom 700 . . . . . 6 (𝐴 ∈ ℂ → ((log‘(exp‘𝐴)) + (𝐴 − (log‘(exp‘𝐴)))) = 𝐴)
3431, 33eqtr2d 2645 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))))))
35 oveq2 6557 . . . . . . . 8 (𝑛 = ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) → ((i · (2 · π)) · 𝑛) = ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π)))))
3635oveq2d 6565 . . . . . . 7 (𝑛 = ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) → ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)) = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))))))
3736eqeq2d 2620 . . . . . 6 (𝑛 = ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) → (𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)) ↔ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π)))))))
3837rspcev 3282 . . . . 5 ((((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) ∈ ℤ ∧ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π)))))) → ∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)))
3915, 34, 38syl2anc 691 . . . 4 (𝐴 ∈ ℂ → ∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)))
40393ad2ant1 1075 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)))
41 fveq2 6103 . . . . . 6 ((exp‘𝐴) = 𝐵 → (log‘(exp‘𝐴)) = (log‘𝐵))
4241oveq1d 6564 . . . . 5 ((exp‘𝐴) = 𝐵 → ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)) = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)))
4342eqeq2d 2620 . . . 4 ((exp‘𝐴) = 𝐵 → (𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)) ↔ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
4443rexbidv 3034 . . 3 ((exp‘𝐴) = 𝐵 → (∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)) ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
4540, 44syl5ibcom 234 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((exp‘𝐴) = 𝐵 → ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
46 logcl 24119 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ)
47463adant1 1072 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ)
4847adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (log‘𝐵) ∈ ℂ)
49 zcn 11259 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
5049adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
51 mulcl 9899 . . . . . . 7 (((i · (2 · π)) ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((i · (2 · π)) · 𝑛) ∈ ℂ)
5220, 50, 51sylancr 694 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((i · (2 · π)) · 𝑛) ∈ ℂ)
53 efadd 14663 . . . . . 6 (((log‘𝐵) ∈ ℂ ∧ ((i · (2 · π)) · 𝑛) ∈ ℂ) → (exp‘((log‘𝐵) + ((i · (2 · π)) · 𝑛))) = ((exp‘(log‘𝐵)) · (exp‘((i · (2 · π)) · 𝑛))))
5448, 52, 53syl2anc 691 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (exp‘((log‘𝐵) + ((i · (2 · π)) · 𝑛))) = ((exp‘(log‘𝐵)) · (exp‘((i · (2 · π)) · 𝑛))))
55 eflog 24127 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (exp‘(log‘𝐵)) = 𝐵)
56553adant1 1072 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (exp‘(log‘𝐵)) = 𝐵)
57 ef2kpi 24034 . . . . . 6 (𝑛 ∈ ℤ → (exp‘((i · (2 · π)) · 𝑛)) = 1)
5856, 57oveqan12d 6568 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((exp‘(log‘𝐵)) · (exp‘((i · (2 · π)) · 𝑛))) = (𝐵 · 1))
59 simpl2 1058 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝐵 ∈ ℂ)
6059mulid1d 9936 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝐵 · 1) = 𝐵)
6154, 58, 603eqtrd 2648 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (exp‘((log‘𝐵) + ((i · (2 · π)) · 𝑛))) = 𝐵)
62 fveq2 6103 . . . . 5 (𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)) → (exp‘𝐴) = (exp‘((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
6362eqeq1d 2612 . . . 4 (𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)) → ((exp‘𝐴) = 𝐵 ↔ (exp‘((log‘𝐵) + ((i · (2 · π)) · 𝑛))) = 𝐵))
6461, 63syl5ibrcom 236 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)) → (exp‘𝐴) = 𝐵))
6564rexlimdva 3013 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)) → (exp‘𝐴) = 𝐵))
6645, 65impbid 201 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((exp‘𝐴) = 𝐵 ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820   − cmin 10145   / cdiv 10563  2c2 10947  ℤcz 11254  expce 14631  πcpi 14636  logclog 24105 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107 This theorem is referenced by:  cxpeq  24298
 Copyright terms: Public domain W3C validator