Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred Structured version   Visualization version   GIF version

Theorem efgred 17984
 Description: The reduced word that forms the base of the sequence in efgsval 17967 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgred ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 fviss 6166 . . . . . . . 8 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
31, 2eqsstri 3598 . . . . . . 7 𝑊 ⊆ Word (𝐼 × 2𝑜)
4 efgval.r . . . . . . . . . . 11 = ( ~FG𝐼)
5 efgval2.m . . . . . . . . . . 11 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
6 efgval2.t . . . . . . . . . . 11 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . . . . . 11 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . . . . . 11 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
91, 4, 5, 6, 7, 8efgsf 17965 . . . . . . . . . 10 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
109fdmi 5965 . . . . . . . . . . 11 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
1110feq2i 5950 . . . . . . . . . 10 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
129, 11mpbir 220 . . . . . . . . 9 𝑆:dom 𝑆𝑊
1312ffvelrni 6266 . . . . . . . 8 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) ∈ 𝑊)
1413adantr 480 . . . . . . 7 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ 𝑊)
153, 14sseldi 3566 . . . . . 6 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ Word (𝐼 × 2𝑜))
16 lencl 13179 . . . . . 6 ((𝑆𝐴) ∈ Word (𝐼 × 2𝑜) → (#‘(𝑆𝐴)) ∈ ℕ0)
1715, 16syl 17 . . . . 5 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (#‘(𝑆𝐴)) ∈ ℕ0)
18 peano2nn0 11210 . . . . 5 ((#‘(𝑆𝐴)) ∈ ℕ0 → ((#‘(𝑆𝐴)) + 1) ∈ ℕ0)
1917, 18syl 17 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((#‘(𝑆𝐴)) + 1) ∈ ℕ0)
20 breq2 4587 . . . . . . 7 (𝑐 = 0 → ((#‘(𝑆𝑎)) < 𝑐 ↔ (#‘(𝑆𝑎)) < 0))
2120imbi1d 330 . . . . . 6 (𝑐 = 0 → (((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
22212ralbidv 2972 . . . . 5 (𝑐 = 0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
23 breq2 4587 . . . . . . 7 (𝑐 = 𝑖 → ((#‘(𝑆𝑎)) < 𝑐 ↔ (#‘(𝑆𝑎)) < 𝑖))
2423imbi1d 330 . . . . . 6 (𝑐 = 𝑖 → (((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
25242ralbidv 2972 . . . . 5 (𝑐 = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
26 breq2 4587 . . . . . . 7 (𝑐 = (𝑖 + 1) → ((#‘(𝑆𝑎)) < 𝑐 ↔ (#‘(𝑆𝑎)) < (𝑖 + 1)))
2726imbi1d 330 . . . . . 6 (𝑐 = (𝑖 + 1) → (((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
28272ralbidv 2972 . . . . 5 (𝑐 = (𝑖 + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
29 breq2 4587 . . . . . . 7 (𝑐 = ((#‘(𝑆𝐴)) + 1) → ((#‘(𝑆𝑎)) < 𝑐 ↔ (#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1)))
3029imbi1d 330 . . . . . 6 (𝑐 = ((#‘(𝑆𝐴)) + 1) → (((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
31302ralbidv 2972 . . . . 5 (𝑐 = ((#‘(𝑆𝐴)) + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
3212ffvelrni 6266 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ 𝑊)
333, 32sseldi 3566 . . . . . . . . . 10 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ Word (𝐼 × 2𝑜))
34 lencl 13179 . . . . . . . . . 10 ((𝑆𝑎) ∈ Word (𝐼 × 2𝑜) → (#‘(𝑆𝑎)) ∈ ℕ0)
3533, 34syl 17 . . . . . . . . 9 (𝑎 ∈ dom 𝑆 → (#‘(𝑆𝑎)) ∈ ℕ0)
36 nn0nlt0 11196 . . . . . . . . 9 ((#‘(𝑆𝑎)) ∈ ℕ0 → ¬ (#‘(𝑆𝑎)) < 0)
3735, 36syl 17 . . . . . . . 8 (𝑎 ∈ dom 𝑆 → ¬ (#‘(𝑆𝑎)) < 0)
3837pm2.21d 117 . . . . . . 7 (𝑎 ∈ dom 𝑆 → ((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
3938adantr 480 . . . . . 6 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → ((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
4039rgen2a 2960 . . . . 5 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))
41 simpl1 1057 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
42 simpl3l 1109 . . . . . . . . . . . . . . 15 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (#‘(𝑆𝑐)) = 𝑖)
43 breq2 4587 . . . . . . . . . . . . . . . . 17 ((#‘(𝑆𝑐)) = 𝑖 → ((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) ↔ (#‘(𝑆𝑎)) < 𝑖))
4443imbi1d 330 . . . . . . . . . . . . . . . 16 ((#‘(𝑆𝑐)) = 𝑖 → (((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
45442ralbidv 2972 . . . . . . . . . . . . . . 15 ((#‘(𝑆𝑐)) = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4642, 45syl 17 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4741, 46mpbird 246 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
48 simpl2l 1107 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑐 ∈ dom 𝑆)
49 simpl2r 1108 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑑 ∈ dom 𝑆)
50 simpl3r 1110 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (𝑆𝑐) = (𝑆𝑑))
51 simpr 476 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ¬ (𝑐‘0) = (𝑑‘0))
521, 4, 5, 6, 7, 8, 47, 48, 49, 50, 51efgredlem 17983 . . . . . . . . . . . 12 ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0))
53 iman 439 . . . . . . . . . . . 12 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0)) ↔ ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)))
5452, 53mpbir 220 . . . . . . . . . . 11 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0))
55543expia 1259 . . . . . . . . . 10 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → (((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑)) → (𝑐‘0) = (𝑑‘0)))
5655expd 451 . . . . . . . . 9 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → ((#‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
5756ralrimivva 2954 . . . . . . . 8 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((#‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
58 fveq2 6103 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑆𝑐) = (𝑆𝑎))
5958fveq2d 6107 . . . . . . . . . . 11 (𝑐 = 𝑎 → (#‘(𝑆𝑐)) = (#‘(𝑆𝑎)))
6059eqeq1d 2612 . . . . . . . . . 10 (𝑐 = 𝑎 → ((#‘(𝑆𝑐)) = 𝑖 ↔ (#‘(𝑆𝑎)) = 𝑖))
6158eqeq1d 2612 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑆𝑐) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑑)))
62 fveq1 6102 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐‘0) = (𝑎‘0))
6362eqeq1d 2612 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑐‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑑‘0)))
6461, 63imbi12d 333 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))))
6560, 64imbi12d 333 . . . . . . . . 9 (𝑐 = 𝑎 → (((#‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)))))
66 fveq2 6103 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑆𝑑) = (𝑆𝑏))
6766eqeq2d 2620 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑆𝑎) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑏)))
68 fveq1 6102 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑑‘0) = (𝑏‘0))
6968eqeq2d 2620 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑎‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑏‘0)))
7067, 69imbi12d 333 . . . . . . . . . 10 (𝑑 = 𝑏 → (((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7170imbi2d 329 . . . . . . . . 9 (𝑑 = 𝑏 → (((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))) ↔ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7265, 71cbvral2v 3155 . . . . . . . 8 (∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((#‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7357, 72sylib 207 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7473ancli 572 . . . . . 6 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7535adantr 480 . . . . . . . . . . 11 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → (#‘(𝑆𝑎)) ∈ ℕ0)
76 nn0leltp1 11313 . . . . . . . . . . . . 13 (((#‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((#‘(𝑆𝑎)) ≤ 𝑖 ↔ (#‘(𝑆𝑎)) < (𝑖 + 1)))
77 nn0re 11178 . . . . . . . . . . . . . 14 ((#‘(𝑆𝑎)) ∈ ℕ0 → (#‘(𝑆𝑎)) ∈ ℝ)
78 nn0re 11178 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
79 leloe 10003 . . . . . . . . . . . . . 14 (((#‘(𝑆𝑎)) ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((#‘(𝑆𝑎)) ≤ 𝑖 ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8077, 78, 79syl2an 493 . . . . . . . . . . . . 13 (((#‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((#‘(𝑆𝑎)) ≤ 𝑖 ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8176, 80bitr3d 269 . . . . . . . . . . . 12 (((#‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((#‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8281ancoms 468 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (#‘(𝑆𝑎)) ∈ ℕ0) → ((#‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8375, 82sylan2 490 . . . . . . . . . 10 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → ((#‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8483imbi1d 330 . . . . . . . . 9 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
85 jaob 818 . . . . . . . . 9 ((((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8684, 85syl6bb 275 . . . . . . . 8 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
87862ralbidva 2971 . . . . . . 7 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
88 r19.26-2 3047 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8987, 88syl6bb 275 . . . . . 6 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
9074, 89syl5ibr 235 . . . . 5 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
9122, 25, 28, 31, 40, 90nn0ind 11348 . . . 4 (((#‘(𝑆𝐴)) + 1) ∈ ℕ0 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9219, 91syl 17 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9317nn0red 11229 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (#‘(𝑆𝐴)) ∈ ℝ)
9493ltp1d 10833 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1))
95 fveq2 6103 . . . . . . 7 (𝑎 = 𝐴 → (𝑆𝑎) = (𝑆𝐴))
9695fveq2d 6107 . . . . . 6 (𝑎 = 𝐴 → (#‘(𝑆𝑎)) = (#‘(𝑆𝐴)))
9796breq1d 4593 . . . . 5 (𝑎 = 𝐴 → ((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) ↔ (#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1)))
9895eqeq1d 2612 . . . . . 6 (𝑎 = 𝐴 → ((𝑆𝑎) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝑏)))
99 fveq1 6102 . . . . . . 7 (𝑎 = 𝐴 → (𝑎‘0) = (𝐴‘0))
10099eqeq1d 2612 . . . . . 6 (𝑎 = 𝐴 → ((𝑎‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝑏‘0)))
10198, 100imbi12d 333 . . . . 5 (𝑎 = 𝐴 → (((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))))
10297, 101imbi12d 333 . . . 4 (𝑎 = 𝐴 → (((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)))))
103 fveq2 6103 . . . . . . 7 (𝑏 = 𝐵 → (𝑆𝑏) = (𝑆𝐵))
104103eqeq2d 2620 . . . . . 6 (𝑏 = 𝐵 → ((𝑆𝐴) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝐵)))
105 fveq1 6102 . . . . . . 7 (𝑏 = 𝐵 → (𝑏‘0) = (𝐵‘0))
106105eqeq2d 2620 . . . . . 6 (𝑏 = 𝐵 → ((𝐴‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝐵‘0)))
107104, 106imbi12d 333 . . . . 5 (𝑏 = 𝐵 → (((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0))))
108107imbi2d 329 . . . 4 (𝑏 = 𝐵 → (((#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
109102, 108rspc2v 3293 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ((#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
11092, 94, 109mp2d 47 . 2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))
1111103impia 1253 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900   ∖ cdif 3537  ∅c0 3874  {csn 4125  ⟨cop 4131  ⟨cotp 4133  ∪ ciun 4455   class class class wbr 4583   ↦ cmpt 4643   I cid 4948   × cxp 5036  dom cdm 5038  ran crn 5039  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145  ℕ0cn0 11169  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   splice csplice 13151  ⟨“cs2 13437   ~FG cefg 17942 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-s2 13444 This theorem is referenced by:  efgrelexlemb  17986
 Copyright terms: Public domain W3C validator