MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsf Structured version   Visualization version   GIF version

Theorem efgsf 17965
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgsf 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsf
StepHypRef Expression
1 id 22 . . . . . 6 (𝑚 = 𝑡𝑚 = 𝑡)
2 fveq2 6103 . . . . . . 7 (𝑚 = 𝑡 → (#‘𝑚) = (#‘𝑡))
32oveq1d 6564 . . . . . 6 (𝑚 = 𝑡 → ((#‘𝑚) − 1) = ((#‘𝑡) − 1))
41, 3fveq12d 6109 . . . . 5 (𝑚 = 𝑡 → (𝑚‘((#‘𝑚) − 1)) = (𝑡‘((#‘𝑡) − 1)))
54eleq1d 2672 . . . 4 (𝑚 = 𝑡 → ((𝑚‘((#‘𝑚) − 1)) ∈ 𝑊 ↔ (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊))
65ralrab2 3339 . . 3 (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((#‘𝑚) − 1)) ∈ 𝑊 ↔ ∀𝑡 ∈ (Word 𝑊 ∖ {∅})(((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊))
7 eldifi 3694 . . . . . 6 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡 ∈ Word 𝑊)
8 wrdf 13165 . . . . . 6 (𝑡 ∈ Word 𝑊𝑡:(0..^(#‘𝑡))⟶𝑊)
97, 8syl 17 . . . . 5 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡:(0..^(#‘𝑡))⟶𝑊)
10 eldifsn 4260 . . . . . . 7 (𝑡 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑡 ∈ Word 𝑊𝑡 ≠ ∅))
11 lennncl 13180 . . . . . . 7 ((𝑡 ∈ Word 𝑊𝑡 ≠ ∅) → (#‘𝑡) ∈ ℕ)
1210, 11sylbi 206 . . . . . 6 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (#‘𝑡) ∈ ℕ)
13 fzo0end 12426 . . . . . 6 ((#‘𝑡) ∈ ℕ → ((#‘𝑡) − 1) ∈ (0..^(#‘𝑡)))
1412, 13syl 17 . . . . 5 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → ((#‘𝑡) − 1) ∈ (0..^(#‘𝑡)))
159, 14ffvelrnd 6268 . . . 4 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊)
1615a1d 25 . . 3 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊))
176, 16mprgbir 2911 . 2 𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((#‘𝑚) − 1)) ∈ 𝑊
18 efgred.s . . 3 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
1918fmpt 6289 . 2 (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((#‘𝑚) − 1)) ∈ 𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
2017, 19mpbi 219 1 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  cdif 3537  c0 3874  {csn 4125  cop 4131  cotp 4133   ciun 4455  cmpt 4643   I cid 4948   × cxp 5036  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441  0cc0 9815  1c1 9816  cmin 10145  cn 10897  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   splice csplice 13151  ⟨“cs2 13437   ~FG cefg 17942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154
This theorem is referenced by:  efgsdm  17966  efgsval  17967  efgsp1  17973  efgsfo  17975  efgredleme  17979  efgred  17984
  Copyright terms: Public domain W3C validator