MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred Structured version   Unicode version

Theorem efgred 17336
Description: The reduced word that forms the base of the sequence in efgsval 17319 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgred  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S  /\  ( S `  A )  =  ( S `  B ) )  ->  ( A `  0 )  =  ( B `  0
) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)

Proof of Theorem efgred
Dummy variables  a 
b  c  d  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 fviss 5878 . . . . . . . 8  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
31, 2eqsstri 3432 . . . . . . 7  |-  W  C_ Word  ( I  X.  2o )
4 efgval.r . . . . . . . . . . 11  |-  .~  =  ( ~FG  `  I )
5 efgval2.m . . . . . . . . . . 11  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
6 efgval2.t . . . . . . . . . . 11  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
7 efgred.d . . . . . . . . . . 11  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
8 efgred.s . . . . . . . . . . 11  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
91, 4, 5, 6, 7, 8efgsf 17317 . . . . . . . . . 10  |-  S : { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) } --> W
109fdmi 5689 . . . . . . . . . . 11  |-  dom  S  =  { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) }
1110feq2i 5677 . . . . . . . . . 10  |-  ( S : dom  S --> W  <->  S : { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) } --> W )
129, 11mpbir 212 . . . . . . . . 9  |-  S : dom  S --> W
1312ffvelrni 5975 . . . . . . . 8  |-  ( A  e.  dom  S  -> 
( S `  A
)  e.  W )
1413adantr 466 . . . . . . 7  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( S `  A )  e.  W
)
153, 14sseldi 3400 . . . . . 6  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( S `  A )  e. Word  (
I  X.  2o ) )
16 lencl 12630 . . . . . 6  |-  ( ( S `  A )  e. Word  ( I  X.  2o )  ->  ( # `  ( S `  A
) )  e.  NN0 )
1715, 16syl 17 . . . . 5  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( # `  ( S `  A )
)  e.  NN0 )
18 peano2nn0 10856 . . . . 5  |-  ( (
# `  ( S `  A ) )  e. 
NN0  ->  ( ( # `  ( S `  A
) )  +  1 )  e.  NN0 )
1917, 18syl 17 . . . 4  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( # `
 ( S `  A ) )  +  1 )  e.  NN0 )
20 breq2 4365 . . . . . . 7  |-  ( c  =  0  ->  (
( # `  ( S `
 a ) )  <  c  <->  ( # `  ( S `  a )
)  <  0 ) )
2120imbi1d 318 . . . . . 6  |-  ( c  =  0  ->  (
( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  a
) )  <  0  ->  ( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) ) ) )
22212ralbidv 2804 . . . . 5  |-  ( c  =  0  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  0  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
23 breq2 4365 . . . . . . 7  |-  ( c  =  i  ->  (
( # `  ( S `
 a ) )  <  c  <->  ( # `  ( S `  a )
)  <  i )
)
2423imbi1d 318 . . . . . 6  |-  ( c  =  i  ->  (
( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  a
) )  <  i  ->  ( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) ) ) )
25242ralbidv 2804 . . . . 5  |-  ( c  =  i  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
26 breq2 4365 . . . . . . 7  |-  ( c  =  ( i  +  1 )  ->  (
( # `  ( S `
 a ) )  <  c  <->  ( # `  ( S `  a )
)  <  ( i  +  1 ) ) )
2726imbi1d 318 . . . . . 6  |-  ( c  =  ( i  +  1 )  ->  (
( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  a
) )  <  (
i  +  1 )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) ) )
28272ralbidv 2804 . . . . 5  |-  ( c  =  ( i  +  1 )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) ) ) )
29 breq2 4365 . . . . . . 7  |-  ( c  =  ( ( # `  ( S `  A
) )  +  1 )  ->  ( ( # `
 ( S `  a ) )  < 
c  <->  ( # `  ( S `  a )
)  <  ( ( # `
 ( S `  A ) )  +  1 ) ) )
3029imbi1d 318 . . . . . 6  |-  ( c  =  ( ( # `  ( S `  A
) )  +  1 )  ->  ( (
( # `  ( S `
 a ) )  <  c  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  a
) )  <  (
( # `  ( S `
 A ) )  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) ) ) )
31302ralbidv 2804 . . . . 5  |-  ( c  =  ( ( # `  ( S `  A
) )  +  1 )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  c  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( ( # `
 ( S `  A ) )  +  1 )  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
3212ffvelrni 5975 . . . . . . . . . . 11  |-  ( a  e.  dom  S  -> 
( S `  a
)  e.  W )
333, 32sseldi 3400 . . . . . . . . . 10  |-  ( a  e.  dom  S  -> 
( S `  a
)  e. Word  ( I  X.  2o ) )
34 lencl 12630 . . . . . . . . . 10  |-  ( ( S `  a )  e. Word  ( I  X.  2o )  ->  ( # `  ( S `  a
) )  e.  NN0 )
3533, 34syl 17 . . . . . . . . 9  |-  ( a  e.  dom  S  -> 
( # `  ( S `
 a ) )  e.  NN0 )
36 nn0nlt0 10842 . . . . . . . . 9  |-  ( (
# `  ( S `  a ) )  e. 
NN0  ->  -.  ( # `  ( S `  a )
)  <  0 )
3735, 36syl 17 . . . . . . . 8  |-  ( a  e.  dom  S  ->  -.  ( # `  ( S `  a )
)  <  0 )
3837pm2.21d 109 . . . . . . 7  |-  ( a  e.  dom  S  -> 
( ( # `  ( S `  a )
)  <  0  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) )
3938adantr 466 . . . . . 6  |-  ( ( a  e.  dom  S  /\  b  e.  dom  S )  ->  ( ( # `
 ( S `  a ) )  <  0  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
4039rgen2a 2787 . . . . 5  |-  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  <  0  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )
41 simpl1 1008 . . . . . . . . . . . . . 14  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
42 simpl3l 1060 . . . . . . . . . . . . . . 15  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  ( # `
 ( S `  c ) )  =  i )
43 breq2 4365 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  ( S `  c ) )  =  i  ->  ( ( # `
 ( S `  a ) )  < 
( # `  ( S `
 c ) )  <-> 
( # `  ( S `
 a ) )  <  i ) )
4443imbi1d 318 . . . . . . . . . . . . . . . 16  |-  ( (
# `  ( S `  c ) )  =  i  ->  ( (
( # `  ( S `
 a ) )  <  ( # `  ( S `  c )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  <-> 
( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
45442ralbidv 2804 . . . . . . . . . . . . . . 15  |-  ( (
# `  ( S `  c ) )  =  i  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  c )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
4642, 45syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  c )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
4741, 46mpbird 235 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( # `  ( S `
 c ) )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) )
48 simpl2l 1058 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  c  e.  dom  S )
49 simpl2r 1059 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  d  e.  dom  S )
50 simpl3r 1061 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  ( S `  c )  =  ( S `  d ) )
51 simpr 462 . . . . . . . . . . . . 13  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )  ->  -.  ( c `  0
)  =  ( d `
 0 ) )
521, 4, 5, 6, 7, 8, 47, 48, 49, 50, 51efgredlem 17335 . . . . . . . . . . . 12  |-  -.  (
( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `
 0 )  =  ( d `  0
) )
53 iman 425 . . . . . . . . . . . 12  |-  ( ( ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  ( c  e. 
dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c )
)  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  ->  ( c ` 
0 )  =  ( d `  0 ) )  <->  -.  ( ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( c  e.  dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c
) )  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  /\  -.  ( c `  0
)  =  ( d `
 0 ) ) )
5452, 53mpbir 212 . . . . . . . . . . 11  |-  ( ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( c  e.  dom  S  /\  d  e.  dom  S )  /\  ( ( # `  ( S `  c
) )  =  i  /\  ( S `  c )  =  ( S `  d ) ) )  ->  (
c `  0 )  =  ( d ` 
0 ) )
55543expia 1207 . . . . . . . . . 10  |-  ( ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( c  e.  dom  S  /\  d  e.  dom  S ) )  ->  ( (
( # `  ( S `
 c ) )  =  i  /\  ( S `  c )  =  ( S `  d ) )  -> 
( c `  0
)  =  ( d `
 0 ) ) )
5655expd 437 . . . . . . . . 9  |-  ( ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( c  e.  dom  S  /\  d  e.  dom  S ) )  ->  ( ( # `
 ( S `  c ) )  =  i  ->  ( ( S `  c )  =  ( S `  d )  ->  (
c `  0 )  =  ( d ` 
0 ) ) ) )
5756ralrimivva 2781 . . . . . . . 8  |-  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  A. c  e.  dom  S A. d  e.  dom  S ( (
# `  ( S `  c ) )  =  i  ->  ( ( S `  c )  =  ( S `  d )  ->  (
c `  0 )  =  ( d ` 
0 ) ) ) )
58 fveq2 5820 . . . . . . . . . . . 12  |-  ( c  =  a  ->  ( S `  c )  =  ( S `  a ) )
5958fveq2d 5824 . . . . . . . . . . 11  |-  ( c  =  a  ->  ( # `
 ( S `  c ) )  =  ( # `  ( S `  a )
) )
6059eqeq1d 2425 . . . . . . . . . 10  |-  ( c  =  a  ->  (
( # `  ( S `
 c ) )  =  i  <->  ( # `  ( S `  a )
)  =  i ) )
6158eqeq1d 2425 . . . . . . . . . . 11  |-  ( c  =  a  ->  (
( S `  c
)  =  ( S `
 d )  <->  ( S `  a )  =  ( S `  d ) ) )
62 fveq1 5819 . . . . . . . . . . . 12  |-  ( c  =  a  ->  (
c `  0 )  =  ( a ` 
0 ) )
6362eqeq1d 2425 . . . . . . . . . . 11  |-  ( c  =  a  ->  (
( c `  0
)  =  ( d `
 0 )  <->  ( a `  0 )  =  ( d `  0
) ) )
6461, 63imbi12d 321 . . . . . . . . . 10  |-  ( c  =  a  ->  (
( ( S `  c )  =  ( S `  d )  ->  ( c ` 
0 )  =  ( d `  0 ) )  <->  ( ( S `
 a )  =  ( S `  d
)  ->  ( a `  0 )  =  ( d `  0
) ) ) )
6560, 64imbi12d 321 . . . . . . . . 9  |-  ( c  =  a  ->  (
( ( # `  ( S `  c )
)  =  i  -> 
( ( S `  c )  =  ( S `  d )  ->  ( c ` 
0 )  =  ( d `  0 ) ) )  <->  ( ( # `
 ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  d )  ->  (
a `  0 )  =  ( d ` 
0 ) ) ) ) )
66 fveq2 5820 . . . . . . . . . . . 12  |-  ( d  =  b  ->  ( S `  d )  =  ( S `  b ) )
6766eqeq2d 2433 . . . . . . . . . . 11  |-  ( d  =  b  ->  (
( S `  a
)  =  ( S `
 d )  <->  ( S `  a )  =  ( S `  b ) ) )
68 fveq1 5819 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (
d `  0 )  =  ( b ` 
0 ) )
6968eqeq2d 2433 . . . . . . . . . . 11  |-  ( d  =  b  ->  (
( a `  0
)  =  ( d `
 0 )  <->  ( a `  0 )  =  ( b `  0
) ) )
7067, 69imbi12d 321 . . . . . . . . . 10  |-  ( d  =  b  ->  (
( ( S `  a )  =  ( S `  d )  ->  ( a ` 
0 )  =  ( d `  0 ) )  <->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) )
7170imbi2d 317 . . . . . . . . 9  |-  ( d  =  b  ->  (
( ( # `  ( S `  a )
)  =  i  -> 
( ( S `  a )  =  ( S `  d )  ->  ( a ` 
0 )  =  ( d `  0 ) ) )  <->  ( ( # `
 ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
7265, 71cbvral2v 2999 . . . . . . . 8  |-  ( A. c  e.  dom  S A. d  e.  dom  S ( ( # `  ( S `  c )
)  =  i  -> 
( ( S `  c )  =  ( S `  d )  ->  ( c ` 
0 )  =  ( d `  0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
7357, 72sylib 199 . . . . . . 7  |-  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
7473ancli 553 . . . . . 6  |-  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
7535adantr 466 . . . . . . . . . . 11  |-  ( ( a  e.  dom  S  /\  b  e.  dom  S )  ->  ( # `  ( S `  a )
)  e.  NN0 )
76 nn0leltp1 10941 . . . . . . . . . . . . 13  |-  ( ( ( # `  ( S `  a )
)  e.  NN0  /\  i  e.  NN0 )  -> 
( ( # `  ( S `  a )
)  <_  i  <->  ( # `  ( S `  a )
)  <  ( i  +  1 ) ) )
77 nn0re 10824 . . . . . . . . . . . . . 14  |-  ( (
# `  ( S `  a ) )  e. 
NN0  ->  ( # `  ( S `  a )
)  e.  RR )
78 nn0re 10824 . . . . . . . . . . . . . 14  |-  ( i  e.  NN0  ->  i  e.  RR )
79 leloe 9666 . . . . . . . . . . . . . 14  |-  ( ( ( # `  ( S `  a )
)  e.  RR  /\  i  e.  RR )  ->  ( ( # `  ( S `  a )
)  <_  i  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8077, 78, 79syl2an 479 . . . . . . . . . . . . 13  |-  ( ( ( # `  ( S `  a )
)  e.  NN0  /\  i  e.  NN0 )  -> 
( ( # `  ( S `  a )
)  <_  i  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8176, 80bitr3d 258 . . . . . . . . . . . 12  |-  ( ( ( # `  ( S `  a )
)  e.  NN0  /\  i  e.  NN0 )  -> 
( ( # `  ( S `  a )
)  <  ( i  +  1 )  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8281ancoms 454 . . . . . . . . . . 11  |-  ( ( i  e.  NN0  /\  ( # `  ( S `
 a ) )  e.  NN0 )  -> 
( ( # `  ( S `  a )
)  <  ( i  +  1 )  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8375, 82sylan2 476 . . . . . . . . . 10  |-  ( ( i  e.  NN0  /\  ( a  e.  dom  S  /\  b  e.  dom  S ) )  ->  (
( # `  ( S `
 a ) )  <  ( i  +  1 )  <->  ( ( # `
 ( S `  a ) )  < 
i  \/  ( # `  ( S `  a
) )  =  i ) ) )
8483imbi1d 318 . . . . . . . . 9  |-  ( ( i  e.  NN0  /\  ( a  e.  dom  S  /\  b  e.  dom  S ) )  ->  (
( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  ( (
( # `  ( S `
 a ) )  <  i  \/  ( # `
 ( S `  a ) )  =  i )  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) ) ) )
85 jaob 790 . . . . . . . . 9  |-  ( ( ( ( # `  ( S `  a )
)  <  i  \/  ( # `  ( S `
 a ) )  =  i )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  ( (
( # `  ( S `
 a ) )  <  i  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
8684, 85syl6bb 264 . . . . . . . 8  |-  ( ( i  e.  NN0  /\  ( a  e.  dom  S  /\  b  e.  dom  S ) )  ->  (
( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  ( (
( # `  ( S `
 a ) )  <  i  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) ) )
87862ralbidva 2802 . . . . . . 7  |-  ( i  e.  NN0  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) ) )
88 r19.26-2 2890 . . . . . . 7  |-  ( A. a  e.  dom  S A. b  e.  dom  S ( ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )  <->  ( A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  /\  A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
8987, 88syl6bb 264 . . . . . 6  |-  ( i  e.  NN0  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( i  +  1 )  -> 
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) ) )  <->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  /\  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  =  i  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) ) )
9074, 89syl5ibr 224 . . . . 5  |-  ( i  e.  NN0  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  i  ->  ( ( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( i  +  1 )  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
9122, 25, 28, 31, 40, 90nn0ind 10976 . . . 4  |-  ( ( ( # `  ( S `  A )
)  +  1 )  e.  NN0  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( ( # `  ( S `  A )
)  +  1 )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) )
9219, 91syl 17 . . 3  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( ( # `  ( S `  A )
)  +  1 )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) )
9317nn0red 10872 . . . 4  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( # `  ( S `  A )
)  e.  RR )
9493ltp1d 10483 . . 3  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( # `  ( S `  A )
)  <  ( ( # `
 ( S `  A ) )  +  1 ) )
95 fveq2 5820 . . . . . . 7  |-  ( a  =  A  ->  ( S `  a )  =  ( S `  A ) )
9695fveq2d 5824 . . . . . 6  |-  ( a  =  A  ->  ( # `
 ( S `  a ) )  =  ( # `  ( S `  A )
) )
9796breq1d 4371 . . . . 5  |-  ( a  =  A  ->  (
( # `  ( S `
 a ) )  <  ( ( # `  ( S `  A
) )  +  1 )  <->  ( # `  ( S `  A )
)  <  ( ( # `
 ( S `  A ) )  +  1 ) ) )
9895eqeq1d 2425 . . . . . 6  |-  ( a  =  A  ->  (
( S `  a
)  =  ( S `
 b )  <->  ( S `  A )  =  ( S `  b ) ) )
99 fveq1 5819 . . . . . . 7  |-  ( a  =  A  ->  (
a `  0 )  =  ( A ` 
0 ) )
10099eqeq1d 2425 . . . . . 6  |-  ( a  =  A  ->  (
( a `  0
)  =  ( b `
 0 )  <->  ( A `  0 )  =  ( b `  0
) ) )
10198, 100imbi12d 321 . . . . 5  |-  ( a  =  A  ->  (
( ( S `  a )  =  ( S `  b )  ->  ( a ` 
0 )  =  ( b `  0 ) )  <->  ( ( S `
 A )  =  ( S `  b
)  ->  ( A `  0 )  =  ( b `  0
) ) ) )
10297, 101imbi12d 321 . . . 4  |-  ( a  =  A  ->  (
( ( # `  ( S `  a )
)  <  ( ( # `
 ( S `  A ) )  +  1 )  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  A
) )  <  (
( # `  ( S `
 A ) )  +  1 )  -> 
( ( S `  A )  =  ( S `  b )  ->  ( A ` 
0 )  =  ( b `  0 ) ) ) ) )
103 fveq2 5820 . . . . . . 7  |-  ( b  =  B  ->  ( S `  b )  =  ( S `  B ) )
104103eqeq2d 2433 . . . . . 6  |-  ( b  =  B  ->  (
( S `  A
)  =  ( S `
 b )  <->  ( S `  A )  =  ( S `  B ) ) )
105 fveq1 5819 . . . . . . 7  |-  ( b  =  B  ->  (
b `  0 )  =  ( B ` 
0 ) )
106105eqeq2d 2433 . . . . . 6  |-  ( b  =  B  ->  (
( A `  0
)  =  ( b `
 0 )  <->  ( A `  0 )  =  ( B `  0
) ) )
107104, 106imbi12d 321 . . . . 5  |-  ( b  =  B  ->  (
( ( S `  A )  =  ( S `  b )  ->  ( A ` 
0 )  =  ( b `  0 ) )  <->  ( ( S `
 A )  =  ( S `  B
)  ->  ( A `  0 )  =  ( B `  0
) ) ) )
108107imbi2d 317 . . . 4  |-  ( b  =  B  ->  (
( ( # `  ( S `  A )
)  <  ( ( # `
 ( S `  A ) )  +  1 )  ->  (
( S `  A
)  =  ( S `
 b )  -> 
( A `  0
)  =  ( b `
 0 ) ) )  <->  ( ( # `  ( S `  A
) )  <  (
( # `  ( S `
 A ) )  +  1 )  -> 
( ( S `  A )  =  ( S `  B )  ->  ( A ` 
0 )  =  ( B `  0 ) ) ) ) )
109102, 108rspc2v 3129 . . 3  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( ( # `
 ( S `  A ) )  +  1 )  ->  (
( S `  a
)  =  ( S `
 b )  -> 
( a `  0
)  =  ( b `
 0 ) ) )  ->  ( ( # `
 ( S `  A ) )  < 
( ( # `  ( S `  A )
)  +  1 )  ->  ( ( S `
 A )  =  ( S `  B
)  ->  ( A `  0 )  =  ( B `  0
) ) ) ) )
11092, 94, 109mp2d 46 . 2  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( S `  A )  =  ( S `  B )  ->  ( A `  0 )  =  ( B ` 
0 ) ) )
1111103impia 1202 1  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S  /\  ( S `  A )  =  ( S `  B ) )  ->  ( A `  0 )  =  ( B `  0
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   A.wral 2709   {crab 2713    \ cdif 3371   (/)c0 3699   {csn 3936   <.cop 3942   <.cotp 3944   U_ciun 4237   class class class wbr 4361    |-> cmpt 4420    _I cid 4701    X. cxp 4789   dom cdm 4791   ran crn 4792   -->wf 5535   ` cfv 5539  (class class class)co 6244    |-> cmpt2 6246   1oc1o 7125   2oc2o 7126   RRcr 9484   0cc0 9485   1c1 9486    + caddc 9488    < clt 9621    <_ cle 9622    - cmin 9806   NN0cn0 10815   ...cfz 11730  ..^cfzo 11861   #chash 12460  Word cword 12599   splice csplice 12604   <"cs2 12878   ~FG cefg 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536  ax-cnex 9541  ax-resscn 9542  ax-1cn 9543  ax-icn 9544  ax-addcl 9545  ax-addrcl 9546  ax-mulcl 9547  ax-mulrcl 9548  ax-mulcom 9549  ax-addass 9550  ax-mulass 9551  ax-distr 9552  ax-i2m1 9553  ax-1ne0 9554  ax-1rid 9555  ax-rnegex 9556  ax-rrecex 9557  ax-cnre 9558  ax-pre-lttri 9559  ax-pre-lttrn 9560  ax-pre-ltadd 9561  ax-pre-mulgt0 9562
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-nel 2597  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-ot 3945  df-uni 4158  df-int 4194  df-iun 4239  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-pred 5337  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-om 6646  df-1st 6746  df-2nd 6747  df-wrecs 6978  df-recs 7040  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7520  df-dom 7521  df-sdom 7522  df-fin 7523  df-card 8320  df-cda 8544  df-pnf 9623  df-mnf 9624  df-xr 9625  df-ltxr 9626  df-le 9627  df-sub 9808  df-neg 9809  df-nn 10556  df-2 10614  df-n0 10816  df-z 10884  df-uz 11106  df-rp 11249  df-fz 11731  df-fzo 11862  df-hash 12461  df-word 12607  df-concat 12609  df-s1 12610  df-substr 12611  df-splice 12612  df-s2 12885
This theorem is referenced by:  efgrelexlemb  17338
  Copyright terms: Public domain W3C validator