Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divnumden2 Structured version   Visualization version   GIF version

Theorem divnumden2 28951
Description: Calculate the reduced form of a quotient using gcd. This version extends divnumden 15294 for the negative integers. (Contributed by Thierry Arnoux, 25-Oct-2017.)
Assertion
Ref Expression
divnumden2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵))))

Proof of Theorem divnumden2
StepHypRef Expression
1 zssq 11671 . . . . . . . 8 ℤ ⊆ ℚ
2 simp1 1054 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
31, 2sseldi 3566 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℚ)
4 simp2 1055 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
51, 4sseldi 3566 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℚ)
6 nnne0 10930 . . . . . . . . . . . 12 (-𝐵 ∈ ℕ → -𝐵 ≠ 0)
763ad2ant3 1077 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ 0)
8 neg0 10206 . . . . . . . . . . . 12 -0 = 0
98neeq2i 2847 . . . . . . . . . . 11 (-𝐵 ≠ -0 ↔ -𝐵 ≠ 0)
107, 9sylibr 223 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ -0)
1110neneqd 2787 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ -𝐵 = -0)
124zcnd 11359 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
13 0cnd 9912 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 0 ∈ ℂ)
1412, 13neg11ad 10267 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 = -0 ↔ 𝐵 = 0))
1511, 14mtbid 313 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ 𝐵 = 0)
1615neqned 2789 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ≠ 0)
17 qdivcl 11685 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
183, 5, 16, 17syl3anc 1318 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
19 qnumcl 15286 . . . . . 6 ((𝐴 / 𝐵) ∈ ℚ → (numer‘(𝐴 / 𝐵)) ∈ ℤ)
2018, 19syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) ∈ ℤ)
2120zcnd 11359 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) ∈ ℂ)
22 simpl 472 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
2322zcnd 11359 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
24233adant2 1073 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
252, 4gcdcld 15068 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ0)
2625nn0cnd 11230 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
2726negcld 10258 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ∈ ℂ)
2815intnand 953 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
29 gcdeq0 15076 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3029necon3abid 2818 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
31303adant3 1074 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
3228, 31mpbird 246 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
3326, 32negne0d 10269 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ≠ 0)
3424, 27, 33divcld 10680 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / -(𝐴 gcd 𝐵)) ∈ ℂ)
3524, 12, 16divneg2d 10694 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / 𝐵) = (𝐴 / -𝐵))
3635fveq2d 6107 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘-(𝐴 / 𝐵)) = (numer‘(𝐴 / -𝐵)))
37 numdenneg 28950 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℚ → ((numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)) ∧ (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵))))
3837simpld 474 . . . . . 6 ((𝐴 / 𝐵) ∈ ℚ → (numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)))
3918, 38syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)))
40 gcdneg 15081 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵))
41403adant3 1074 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵))
4241oveq2d 6565 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd -𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
43 divnumden 15294 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)) ∧ (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵))))
4443simpld 474 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)))
45443adant2 1073 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)))
4624, 27, 33divnegd 10693 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (-𝐴 / -(𝐴 gcd 𝐵)))
4724, 26, 32div2negd 10695 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
4846, 47eqtrd 2644 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
4942, 45, 483eqtr4d 2654 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵)))
5036, 39, 493eqtr3d 2652 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(numer‘(𝐴 / 𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵)))
5121, 34, 50neg11d 10283 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵)))
5224, 26, 32divneg2d 10694 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / (𝐴 gcd 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵)))
5351, 52eqtr4d 2647 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)))
5435fveq2d 6107 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / -𝐵)))
5537simprd 478 . . . . 5 ((𝐴 / 𝐵) ∈ ℚ → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵)))
5618, 55syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵)))
5741oveq2d 6565 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 / (𝐴 gcd -𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
5843simprd 478 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵)))
59583adant2 1073 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵)))
6012, 26, 32divneg2d 10694 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6112, 26, 32divnegd 10693 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
6260, 61eqtr3d 2646 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐵 / -(𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
6357, 59, 623eqtr4d 2654 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6454, 56, 633eqtr3d 2652 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6564, 60eqtr4d 2647 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵)))
6653, 65jca 553 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  -cneg 10146   / cdiv 10563  cn 10897  cz 11254  cq 11664   gcd cgcd 15054  numercnumer 15279  denomcdenom 15280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282
This theorem is referenced by:  qqhval2lem  29353
  Copyright terms: Public domain W3C validator