Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmsgnsubg Structured version   Visualization version   GIF version

Theorem cnmsgnsubg 19742
 Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypothesis
Ref Expression
cnmsgnsubg.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
Assertion
Ref Expression
cnmsgnsubg {1, -1} ∈ (SubGrp‘𝑀)

Proof of Theorem cnmsgnsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmsgnsubg.m . 2 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
2 elpri 4145 . . 3 (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1))
3 id 22 . . . . 5 (𝑥 = 1 → 𝑥 = 1)
4 ax-1cn 9873 . . . . 5 1 ∈ ℂ
53, 4syl6eqel 2696 . . . 4 (𝑥 = 1 → 𝑥 ∈ ℂ)
6 id 22 . . . . 5 (𝑥 = -1 → 𝑥 = -1)
7 neg1cn 11001 . . . . 5 -1 ∈ ℂ
86, 7syl6eqel 2696 . . . 4 (𝑥 = -1 → 𝑥 ∈ ℂ)
95, 8jaoi 393 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ)
102, 9syl 17 . 2 (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ)
11 ax-1ne0 9884 . . . . . 6 1 ≠ 0
1211a1i 11 . . . . 5 (𝑥 = 1 → 1 ≠ 0)
133, 12eqnetrd 2849 . . . 4 (𝑥 = 1 → 𝑥 ≠ 0)
14 neg1ne0 11003 . . . . . 6 -1 ≠ 0
1514a1i 11 . . . . 5 (𝑥 = -1 → -1 ≠ 0)
166, 15eqnetrd 2849 . . . 4 (𝑥 = -1 → 𝑥 ≠ 0)
1713, 16jaoi 393 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0)
182, 17syl 17 . 2 (𝑥 ∈ {1, -1} → 𝑥 ≠ 0)
19 elpri 4145 . . 3 (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1))
20 oveq12 6558 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1))
214mulid1i 9921 . . . . . 6 (1 · 1) = 1
22 1ex 9914 . . . . . . 7 1 ∈ V
2322prid1 4241 . . . . . 6 1 ∈ {1, -1}
2421, 23eqeltri 2684 . . . . 5 (1 · 1) ∈ {1, -1}
2520, 24syl6eqel 2696 . . . 4 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1})
26 oveq12 6558 . . . . 5 ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1))
277mulid1i 9921 . . . . . 6 (-1 · 1) = -1
28 negex 10158 . . . . . . 7 -1 ∈ V
2928prid2 4242 . . . . . 6 -1 ∈ {1, -1}
3027, 29eqeltri 2684 . . . . 5 (-1 · 1) ∈ {1, -1}
3126, 30syl6eqel 2696 . . . 4 ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1})
32 oveq12 6558 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1))
337mulid2i 9922 . . . . . 6 (1 · -1) = -1
3433, 29eqeltri 2684 . . . . 5 (1 · -1) ∈ {1, -1}
3532, 34syl6eqel 2696 . . . 4 ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1})
36 oveq12 6558 . . . . 5 ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1))
37 neg1mulneg1e1 11122 . . . . . 6 (-1 · -1) = 1
3837, 23eqeltri 2684 . . . . 5 (-1 · -1) ∈ {1, -1}
3936, 38syl6eqel 2696 . . . 4 ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1})
4025, 31, 35, 39ccase 984 . . 3 (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1})
412, 19, 40syl2an 493 . 2 ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1})
42 oveq2 6557 . . . . 5 (𝑥 = 1 → (1 / 𝑥) = (1 / 1))
43 1div1e1 10596 . . . . . 6 (1 / 1) = 1
4443, 23eqeltri 2684 . . . . 5 (1 / 1) ∈ {1, -1}
4542, 44syl6eqel 2696 . . . 4 (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1})
46 oveq2 6557 . . . . 5 (𝑥 = -1 → (1 / 𝑥) = (1 / -1))
47 divneg2 10628 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
484, 4, 11, 47mp3an 1416 . . . . . . 7 -(1 / 1) = (1 / -1)
4943negeqi 10153 . . . . . . 7 -(1 / 1) = -1
5048, 49eqtr3i 2634 . . . . . 6 (1 / -1) = -1
5150, 29eqeltri 2684 . . . . 5 (1 / -1) ∈ {1, -1}
5246, 51syl6eqel 2696 . . . 4 (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1})
5345, 52jaoi 393 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1})
542, 53syl 17 . 2 (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1})
551, 10, 18, 41, 23, 54cnmsubglem 19628 1 {1, -1} ∈ (SubGrp‘𝑀)
 Colors of variables: wff setvar class Syntax hints:   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537  {csn 4125  {cpr 4127  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   · cmul 9820  -cneg 10146   / cdiv 10563   ↾s cress 15696  SubGrpcsubg 17411  mulGrpcmgp 18312  ℂfldccnfld 19567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-cnfld 19568 This theorem is referenced by:  cnmsgngrp  19744  psgninv  19747  zrhpsgnmhm  19749
 Copyright terms: Public domain W3C validator