MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpcyg Structured version   Visualization version   GIF version

Theorem frgpcyg 19741
Description: A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.)
Hypothesis
Ref Expression
frgpcyg.g 𝐺 = (freeGrp‘𝐼)
Assertion
Ref Expression
frgpcyg (𝐼 ≼ 1𝑜𝐺 ∈ CycGrp)

Proof of Theorem frgpcyg
Dummy variables 𝑓 𝑔 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 7871 . . 3 (𝐼 ≼ 1𝑜 ↔ (𝐼 ≺ 1𝑜𝐼 ≈ 1𝑜))
2 sdom1 8045 . . . . 5 (𝐼 ≺ 1𝑜𝐼 = ∅)
3 frgpcyg.g . . . . . . 7 𝐺 = (freeGrp‘𝐼)
4 fveq2 6103 . . . . . . 7 (𝐼 = ∅ → (freeGrp‘𝐼) = (freeGrp‘∅))
53, 4syl5eq 2656 . . . . . 6 (𝐼 = ∅ → 𝐺 = (freeGrp‘∅))
6 0ex 4718 . . . . . . . 8 ∅ ∈ V
7 eqid 2610 . . . . . . . . 9 (freeGrp‘∅) = (freeGrp‘∅)
87frgpgrp 17998 . . . . . . . 8 (∅ ∈ V → (freeGrp‘∅) ∈ Grp)
96, 8ax-mp 5 . . . . . . 7 (freeGrp‘∅) ∈ Grp
10 eqid 2610 . . . . . . . 8 (Base‘(freeGrp‘∅)) = (Base‘(freeGrp‘∅))
117, 100frgp 18015 . . . . . . 7 (Base‘(freeGrp‘∅)) ≈ 1𝑜
12100cyg 18117 . . . . . . 7 (((freeGrp‘∅) ∈ Grp ∧ (Base‘(freeGrp‘∅)) ≈ 1𝑜) → (freeGrp‘∅) ∈ CycGrp)
139, 11, 12mp2an 704 . . . . . 6 (freeGrp‘∅) ∈ CycGrp
145, 13syl6eqel 2696 . . . . 5 (𝐼 = ∅ → 𝐺 ∈ CycGrp)
152, 14sylbi 206 . . . 4 (𝐼 ≺ 1𝑜𝐺 ∈ CycGrp)
16 eqid 2610 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
17 eqid 2610 . . . . 5 (.g𝐺) = (.g𝐺)
18 relen 7846 . . . . . . 7 Rel ≈
1918brrelexi 5082 . . . . . 6 (𝐼 ≈ 1𝑜𝐼 ∈ V)
203frgpgrp 17998 . . . . . 6 (𝐼 ∈ V → 𝐺 ∈ Grp)
2119, 20syl 17 . . . . 5 (𝐼 ≈ 1𝑜𝐺 ∈ Grp)
22 eqid 2610 . . . . . . . 8 ( ~FG𝐼) = ( ~FG𝐼)
23 eqid 2610 . . . . . . . 8 (varFGrp𝐼) = (varFGrp𝐼)
2422, 23, 3, 16vrgpf 18004 . . . . . . 7 (𝐼 ∈ V → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
2519, 24syl 17 . . . . . 6 (𝐼 ≈ 1𝑜 → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
26 en1uniel 7914 . . . . . 6 (𝐼 ≈ 1𝑜 𝐼𝐼)
2725, 26ffvelrnd 6268 . . . . 5 (𝐼 ≈ 1𝑜 → ((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺))
28 zringgrp 19642 . . . . . . . . 9 ring ∈ Grp
29 uniexg 6853 . . . . . . . . . . . 12 (𝐼 ∈ V → 𝐼 ∈ V)
3019, 29syl 17 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜 𝐼 ∈ V)
31 1zzd 11285 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜 → 1 ∈ ℤ)
3230, 31fsnd 6091 . . . . . . . . . 10 (𝐼 ≈ 1𝑜 → {⟨ 𝐼, 1⟩}:{ 𝐼}⟶ℤ)
33 en1b 7910 . . . . . . . . . . . 12 (𝐼 ≈ 1𝑜𝐼 = { 𝐼})
3433biimpi 205 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜𝐼 = { 𝐼})
3534feq2d 5944 . . . . . . . . . 10 (𝐼 ≈ 1𝑜 → ({⟨ 𝐼, 1⟩}:𝐼⟶ℤ ↔ {⟨ 𝐼, 1⟩}:{ 𝐼}⟶ℤ))
3632, 35mpbird 246 . . . . . . . . 9 (𝐼 ≈ 1𝑜 → {⟨ 𝐼, 1⟩}:𝐼⟶ℤ)
37 zringbas 19643 . . . . . . . . . 10 ℤ = (Base‘ℤring)
383, 37, 23frgpup3 18014 . . . . . . . . 9 ((ℤring ∈ Grp ∧ 𝐼 ∈ V ∧ {⟨ 𝐼, 1⟩}:𝐼⟶ℤ) → ∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
3928, 19, 36, 38mp3an2i 1421 . . . . . . . 8 (𝐼 ≈ 1𝑜 → ∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
4039adantr 480 . . . . . . 7 ((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) → ∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
41 reurex 3137 . . . . . . 7 (∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ∃𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
4240, 41syl 17 . . . . . 6 ((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) → ∃𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
43 fveq1 6102 . . . . . . . . . 10 ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = ({⟨ 𝐼, 1⟩}‘ 𝐼))
44 fvco3 6185 . . . . . . . . . . . 12 (((varFGrp𝐼):𝐼⟶(Base‘𝐺) ∧ 𝐼𝐼) → ((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = (𝑓‘((varFGrp𝐼)‘ 𝐼)))
4525, 26, 44syl2anc 691 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜 → ((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = (𝑓‘((varFGrp𝐼)‘ 𝐼)))
46 1z 11284 . . . . . . . . . . . 12 1 ∈ ℤ
47 fvsng 6352 . . . . . . . . . . . 12 (( 𝐼 ∈ V ∧ 1 ∈ ℤ) → ({⟨ 𝐼, 1⟩}‘ 𝐼) = 1)
4830, 46, 47sylancl 693 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜 → ({⟨ 𝐼, 1⟩}‘ 𝐼) = 1)
4945, 48eqeq12d 2625 . . . . . . . . . 10 (𝐼 ≈ 1𝑜 → (((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = ({⟨ 𝐼, 1⟩}‘ 𝐼) ↔ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1))
5043, 49syl5ib 233 . . . . . . . . 9 (𝐼 ≈ 1𝑜 → ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1))
5150ad2antrr 758 . . . . . . . 8 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1))
5216, 37ghmf 17487 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐺 GrpHom ℤring) → 𝑓:(Base‘𝐺)⟶ℤ)
5352ad2antrl 760 . . . . . . . . . . . 12 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑓:(Base‘𝐺)⟶ℤ)
5453ffvelrnda 6267 . . . . . . . . . . 11 (((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑥) ∈ ℤ)
5554an32s 842 . . . . . . . . . 10 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑓𝑥) ∈ ℤ)
56 mptresid 5375 . . . . . . . . . . . . . 14 (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = ( I ↾ (Base‘𝐺))
573, 16, 23frgpup3 18014 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝐼 ∈ V ∧ (varFGrp𝐼):𝐼⟶(Base‘𝐺)) → ∃!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
5821, 19, 25, 57syl3anc 1318 . . . . . . . . . . . . . . . . 17 (𝐼 ≈ 1𝑜 → ∃!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
59 reurmo 3138 . . . . . . . . . . . . . . . . 17 (∃!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) → ∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6058, 59syl 17 . . . . . . . . . . . . . . . 16 (𝐼 ≈ 1𝑜 → ∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6160adantr 480 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6221adantr 480 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝐺 ∈ Grp)
6316idghm 17498 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → ( I ↾ (Base‘𝐺)) ∈ (𝐺 GrpHom 𝐺))
6462, 63syl 17 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ( I ↾ (Base‘𝐺)) ∈ (𝐺 GrpHom 𝐺))
6525adantr 480 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
66 fcoi2 5992 . . . . . . . . . . . . . . . 16 ((varFGrp𝐼):𝐼⟶(Base‘𝐺) → (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6765, 66syl 17 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6853feqmptd 6159 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑓 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑓𝑥)))
69 eqidd 2611 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
70 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓𝑥) → (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
7154, 68, 69, 70fmptco 6303 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ 𝑓) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
7227adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺))
73 eqid 2610 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
7417, 73, 16mulgghm2 19664 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ ((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺)) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (ℤring GrpHom 𝐺))
7562, 72, 74syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (ℤring GrpHom 𝐺))
76 simprl 790 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑓 ∈ (𝐺 GrpHom ℤring))
77 ghmco 17503 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (ℤring GrpHom 𝐺) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ 𝑓) ∈ (𝐺 GrpHom 𝐺))
7875, 76, 77syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ 𝑓) ∈ (𝐺 GrpHom 𝐺))
7971, 78eqeltrrd 2689 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (𝐺 GrpHom 𝐺))
8034adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝐼 = { 𝐼})
8180eleq2d 2673 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦𝐼𝑦 ∈ { 𝐼}))
82 simprr 792 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)
8382oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = (1(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
8416, 17mulg1 17371 . . . . . . . . . . . . . . . . . . . . . 22 (((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺) → (1(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼))
8572, 84syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (1(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼))
8683, 85eqtrd 2644 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼))
87 elsni 4142 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ { 𝐼} → 𝑦 = 𝐼)
8887fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ { 𝐼} → ((varFGrp𝐼)‘𝑦) = ((varFGrp𝐼)‘ 𝐼))
8988fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ { 𝐼} → (𝑓‘((varFGrp𝐼)‘𝑦)) = (𝑓‘((varFGrp𝐼)‘ 𝐼)))
9089oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ { 𝐼} → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
9190, 88eqeq12d 2625 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ { 𝐼} → (((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦) ↔ ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼)))
9286, 91syl5ibrcom 236 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦 ∈ { 𝐼} → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦)))
9381, 92sylbid 229 . . . . . . . . . . . . . . . . . 18 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦𝐼 → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦)))
9493imp 444 . . . . . . . . . . . . . . . . 17 (((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑦𝐼) → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦))
9594mpteq2dva 4672 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦𝐼 ↦ ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑦𝐼 ↦ ((varFGrp𝐼)‘𝑦)))
9665ffvelrnda 6267 . . . . . . . . . . . . . . . . 17 (((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑦𝐼) → ((varFGrp𝐼)‘𝑦) ∈ (Base‘𝐺))
9765feqmptd 6159 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (varFGrp𝐼) = (𝑦𝐼 ↦ ((varFGrp𝐼)‘𝑦)))
98 eqidd 2611 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
99 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((varFGrp𝐼)‘𝑦) → (𝑓𝑥) = (𝑓‘((varFGrp𝐼)‘𝑦)))
10099oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑥 = ((varFGrp𝐼)‘𝑦) → ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
10196, 97, 98, 100fmptco 6303 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (𝑦𝐼 ↦ ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
10295, 101, 973eqtr4d 2654 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (varFGrp𝐼))
103 coeq1 5201 . . . . . . . . . . . . . . . . 17 (𝑔 = ( I ↾ (Base‘𝐺)) → (𝑔 ∘ (varFGrp𝐼)) = (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)))
104103eqeq1d 2612 . . . . . . . . . . . . . . . 16 (𝑔 = ( I ↾ (Base‘𝐺)) → ((𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) ↔ (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼)))
105 coeq1 5201 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) → (𝑔 ∘ (varFGrp𝐼)) = ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)))
106105eqeq1d 2612 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) → ((𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (varFGrp𝐼)))
107104, 106rmoi 3496 . . . . . . . . . . . . . . 15 ((∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) ∧ (( I ↾ (Base‘𝐺)) ∈ (𝐺 GrpHom 𝐺) ∧ (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼)) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (𝐺 GrpHom 𝐺) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (varFGrp𝐼))) → ( I ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
10861, 64, 67, 79, 102, 107syl122anc 1327 . . . . . . . . . . . . . 14 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ( I ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
10956, 108syl5eq 2656 . . . . . . . . . . . . 13 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
110 mpteqb 6207 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (Base‘𝐺)𝑥 ∈ (Base‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ↔ ∀𝑥 ∈ (Base‘𝐺)𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
111 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝐺))
112110, 111mprg 2910 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ↔ ∀𝑥 ∈ (Base‘𝐺)𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
113109, 112sylib 207 . . . . . . . . . . . 12 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ∀𝑥 ∈ (Base‘𝐺)𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
114113r19.21bi 2916 . . . . . . . . . . 11 (((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
115114an32s 842 . . . . . . . . . 10 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
11670eqeq2d 2620 . . . . . . . . . . 11 (𝑛 = (𝑓𝑥) → (𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)) ↔ 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
117116rspcev 3282 . . . . . . . . . 10 (((𝑓𝑥) ∈ ℤ ∧ 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
11855, 115, 117syl2anc 691 . . . . . . . . 9 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
119118expr 641 . . . . . . . 8 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1 → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
12051, 119syld 46 . . . . . . 7 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
121120rexlimdva 3013 . . . . . 6 ((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) → (∃𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
12242, 121mpd 15 . . . . 5 ((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
12316, 17, 21, 27, 122iscygd 18112 . . . 4 (𝐼 ≈ 1𝑜𝐺 ∈ CycGrp)
12415, 123jaoi 393 . . 3 ((𝐼 ≺ 1𝑜𝐼 ≈ 1𝑜) → 𝐺 ∈ CycGrp)
1251, 124sylbi 206 . 2 (𝐼 ≼ 1𝑜𝐺 ∈ CycGrp)
126 cygabl 18115 . . 3 (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)
1273frgpnabl 18101 . . . . 5 (1𝑜𝐼 → ¬ 𝐺 ∈ Abel)
128127con2i 133 . . . 4 (𝐺 ∈ Abel → ¬ 1𝑜𝐼)
129 ablgrp 18021 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
130 eqid 2610 . . . . . . 7 (0g𝐺) = (0g𝐺)
13116, 130grpidcl 17273 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
1323, 16elbasfv 15748 . . . . . 6 ((0g𝐺) ∈ (Base‘𝐺) → 𝐼 ∈ V)
133129, 131, 1323syl 18 . . . . 5 (𝐺 ∈ Abel → 𝐼 ∈ V)
134 1onn 7606 . . . . . 6 1𝑜 ∈ ω
135 nnfi 8038 . . . . . 6 (1𝑜 ∈ ω → 1𝑜 ∈ Fin)
136134, 135ax-mp 5 . . . . 5 1𝑜 ∈ Fin
137 fidomtri2 8703 . . . . 5 ((𝐼 ∈ V ∧ 1𝑜 ∈ Fin) → (𝐼 ≼ 1𝑜 ↔ ¬ 1𝑜𝐼))
138133, 136, 137sylancl 693 . . . 4 (𝐺 ∈ Abel → (𝐼 ≼ 1𝑜 ↔ ¬ 1𝑜𝐼))
139128, 138mpbird 246 . . 3 (𝐺 ∈ Abel → 𝐼 ≼ 1𝑜)
140126, 139syl 17 . 2 (𝐺 ∈ CycGrp → 𝐼 ≼ 1𝑜)
141125, 140impbii 198 1 (𝐼 ≼ 1𝑜𝐺 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898  ∃*wrmo 2899  Vcvv 3173  c0 3874  {csn 4125  cop 4131   cuni 4372   class class class wbr 4583  cmpt 4643   I cid 4948  cres 5040  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  ωcom 6957  1𝑜c1o 7440  cen 7838  cdom 7839  csdm 7840  Fincfn 7841  1c1 9816  cz 11254  Basecbs 15695  0gc0g 15923  Grpcgrp 17245  .gcmg 17363   GrpHom cghm 17480   ~FG cefg 17942  freeGrpcfrgp 17943  varFGrpcvrgp 17944  Abelcabl 18017  CycGrpccyg 18102  ringzring 19637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-reverse 13160  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-frmd 17209  df-vrmd 17210  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-ghm 17481  df-efg 17945  df-frgp 17946  df-vrgp 17947  df-cmn 18018  df-abl 18019  df-cyg 18103  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-cnfld 19568  df-zring 19638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator