Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chpeq0 | Structured version Visualization version GIF version |
Description: The second Chebyshev function is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 9-Apr-2016.) |
Ref | Expression |
---|---|
chpeq0 | ⊢ (𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 ↔ 𝐴 < 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 10967 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | lenlt 9995 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) | |
3 | 1, 2 | mpan 702 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) |
4 | chprpcl 24732 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (ψ‘𝐴) ∈ ℝ+) | |
5 | 4 | rpne0d 11753 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (ψ‘𝐴) ≠ 0) |
6 | 5 | ex 449 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (ψ‘𝐴) ≠ 0)) |
7 | 3, 6 | sylbird 249 | . . 3 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (ψ‘𝐴) ≠ 0)) |
8 | 7 | necon4bd 2802 | . 2 ⊢ (𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 → 𝐴 < 2)) |
9 | reflcl 12459 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ) |
11 | 1red 9934 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ) | |
12 | 2z 11286 | . . . . . . . . . 10 ⊢ 2 ∈ ℤ | |
13 | fllt 12469 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) | |
14 | 12, 13 | mpan2 703 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) |
15 | 14 | biimpa 500 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2) |
16 | df-2 10956 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
17 | 15, 16 | syl6breq 4624 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1)) |
18 | flcl 12458 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
19 | 18 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ) |
20 | 1z 11284 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
21 | zleltp1 11305 | . . . . . . . 8 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) | |
22 | 19, 20, 21 | sylancl 693 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) |
23 | 17, 22 | mpbird 246 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1) |
24 | chpwordi 24683 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (ψ‘(⌊‘𝐴)) ≤ (ψ‘1)) | |
25 | 10, 11, 23, 24 | syl3anc 1318 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘(⌊‘𝐴)) ≤ (ψ‘1)) |
26 | chpfl 24676 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴)) | |
27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴)) |
28 | chp1 24693 | . . . . . 6 ⊢ (ψ‘1) = 0 | |
29 | 28 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘1) = 0) |
30 | 25, 27, 29 | 3brtr3d 4614 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘𝐴) ≤ 0) |
31 | chpge0 24652 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ (ψ‘𝐴)) | |
32 | 31 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 0 ≤ (ψ‘𝐴)) |
33 | chpcl 24650 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ) | |
34 | 33 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘𝐴) ∈ ℝ) |
35 | 0re 9919 | . . . . 5 ⊢ 0 ∈ ℝ | |
36 | letri3 10002 | . . . . 5 ⊢ (((ψ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ψ‘𝐴) = 0 ↔ ((ψ‘𝐴) ≤ 0 ∧ 0 ≤ (ψ‘𝐴)))) | |
37 | 34, 35, 36 | sylancl 693 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((ψ‘𝐴) = 0 ↔ ((ψ‘𝐴) ≤ 0 ∧ 0 ≤ (ψ‘𝐴)))) |
38 | 30, 32, 37 | mpbir2and 959 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘𝐴) = 0) |
39 | 38 | ex 449 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 → (ψ‘𝐴) = 0)) |
40 | 8, 39 | impbid 201 | 1 ⊢ (𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 ↔ 𝐴 < 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 0cc0 9815 1c1 9816 + caddc 9818 < clt 9953 ≤ cle 9954 2c2 10947 ℤcz 11254 ⌊cfl 12453 ψcchp 24619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ioo 12050 df-ioc 12051 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-mod 12531 df-seq 12664 df-exp 12723 df-fac 12923 df-bc 12952 df-hash 12980 df-shft 13655 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-limsup 14050 df-clim 14067 df-rlim 14068 df-sum 14265 df-ef 14637 df-sin 14639 df-cos 14640 df-pi 14642 df-dvds 14822 df-gcd 15055 df-prm 15224 df-pc 15380 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-hom 15793 df-cco 15794 df-rest 15906 df-topn 15907 df-0g 15925 df-gsum 15926 df-topgen 15927 df-pt 15928 df-prds 15931 df-xrs 15985 df-qtop 15990 df-imas 15991 df-xps 15993 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-mulg 17364 df-cntz 17573 df-cmn 18018 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-fbas 19564 df-fg 19565 df-cnfld 19568 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-cld 20633 df-ntr 20634 df-cls 20635 df-nei 20712 df-lp 20750 df-perf 20751 df-cn 20841 df-cnp 20842 df-haus 20929 df-tx 21175 df-hmeo 21368 df-fil 21460 df-fm 21552 df-flim 21553 df-flf 21554 df-xms 21935 df-ms 21936 df-tms 21937 df-cncf 22489 df-limc 23436 df-dv 23437 df-log 24107 df-cht 24623 df-vma 24624 df-chp 24625 |
This theorem is referenced by: chteq0 24734 chpo1ubb 24970 selberg2lem 25039 pntrmax 25053 pntrsumo1 25054 pntrlog2bndlem2 25067 pntrlog2bndlem4 25069 |
Copyright terms: Public domain | W3C validator |