MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem3 Structured version   Visualization version   GIF version

Theorem cantnflem3 8471
Description: Lemma for cantnf 8473. Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than 𝐶 has a normal form, we can use oeeu 7570 to factor 𝐶 into the form ((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍 where 0 < 𝑌 < 𝐴 and 𝑍 < (𝐴𝑜 𝑋) (and a fortiori 𝑋 < 𝐵). Then since 𝑍 < (𝐴𝑜 𝑋) ≤ (𝐴𝑜 𝑋) ·𝑜 𝑌𝐶, 𝑍 has a normal form, and by appending the term (𝐴𝑜 𝑋) ·𝑜 𝑌 using cantnfp1 8461 we get a normal form for 𝐶. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴𝑜 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
cantnf.x 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴𝑜 𝑐)}
cantnf.p 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑎) +𝑜 𝑏) = 𝐶))
cantnf.y 𝑌 = (1st𝑃)
cantnf.z 𝑍 = (2nd𝑃)
cantnf.g (𝜑𝐺𝑆)
cantnf.v (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
cantnf.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnflem3 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Distinct variable groups:   𝑡,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧,𝐶   𝑡,𝑎,𝐴,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑡   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑡,𝑥,𝑦,𝑧   𝑡,𝑍,𝑥,𝑦,𝑧   𝐺,𝑐,𝑡,𝑤,𝑥,𝑦,𝑧   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑏,𝑑,𝑡,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑑)   𝐶(𝑡)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑤,𝑎,𝑏,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑑)   𝐹(𝑡,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑎,𝑏,𝑑)   𝑋(𝑐)   𝑌(𝑎,𝑏,𝑐,𝑑)   𝑍(𝑤,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem cantnflem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
4 cantnf.g . . . . 5 (𝜑𝐺𝑆)
5 oemapval.t . . . . . . . . . . . . . 14 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 cantnf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴𝑜 𝐵))
7 cantnf.s . . . . . . . . . . . . . 14 (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
8 cantnf.e . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ 𝐶)
91, 2, 3, 5, 6, 7, 8cantnflem2 8470 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)))
10 eqid 2610 . . . . . . . . . . . . . . 15 𝑋 = 𝑋
11 eqid 2610 . . . . . . . . . . . . . . 15 𝑌 = 𝑌
12 eqid 2610 . . . . . . . . . . . . . . 15 𝑍 = 𝑍
1310, 11, 123pm3.2i 1232 . . . . . . . . . . . . . 14 (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)
14 cantnf.x . . . . . . . . . . . . . . 15 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴𝑜 𝑐)}
15 cantnf.p . . . . . . . . . . . . . . 15 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑎) +𝑜 𝑏) = 𝐶))
16 cantnf.y . . . . . . . . . . . . . . 15 𝑌 = (1st𝑃)
17 cantnf.z . . . . . . . . . . . . . . 15 𝑍 = (2nd𝑃)
1814, 15, 16, 17oeeui 7569 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑍 ∈ (𝐴𝑜 𝑋)) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍) = 𝐶) ↔ (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)))
1913, 18mpbiri 247 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑍 ∈ (𝐴𝑜 𝑋)) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍) = 𝐶))
209, 19syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑍 ∈ (𝐴𝑜 𝑋)) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍) = 𝐶))
2120simpld 474 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑍 ∈ (𝐴𝑜 𝑋)))
2221simp1d 1066 . . . . . . . . . 10 (𝜑𝑋 ∈ On)
23 oecl 7504 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴𝑜 𝑋) ∈ On)
242, 22, 23syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐴𝑜 𝑋) ∈ On)
2521simp2d 1067 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐴 ∖ 1𝑜))
2625eldifad 3552 . . . . . . . . . 10 (𝜑𝑌𝐴)
27 onelon 5665 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
282, 26, 27syl2anc 691 . . . . . . . . 9 (𝜑𝑌 ∈ On)
29 dif1o 7467 . . . . . . . . . . . 12 (𝑌 ∈ (𝐴 ∖ 1𝑜) ↔ (𝑌𝐴𝑌 ≠ ∅))
3029simprbi 479 . . . . . . . . . . 11 (𝑌 ∈ (𝐴 ∖ 1𝑜) → 𝑌 ≠ ∅)
3125, 30syl 17 . . . . . . . . . 10 (𝜑𝑌 ≠ ∅)
32 on0eln0 5697 . . . . . . . . . . 11 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
3328, 32syl 17 . . . . . . . . . 10 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
3431, 33mpbird 246 . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
35 omword1 7540 . . . . . . . . 9 ((((𝐴𝑜 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈ 𝑌) → (𝐴𝑜 𝑋) ⊆ ((𝐴𝑜 𝑋) ·𝑜 𝑌))
3624, 28, 34, 35syl21anc 1317 . . . . . . . 8 (𝜑 → (𝐴𝑜 𝑋) ⊆ ((𝐴𝑜 𝑋) ·𝑜 𝑌))
37 omcl 7503 . . . . . . . . . . 11 (((𝐴𝑜 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ∈ On)
3824, 28, 37syl2anc 691 . . . . . . . . . 10 (𝜑 → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ∈ On)
3921simp3d 1068 . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝐴𝑜 𝑋))
40 onelon 5665 . . . . . . . . . . 11 (((𝐴𝑜 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴𝑜 𝑋)) → 𝑍 ∈ On)
4124, 39, 40syl2anc 691 . . . . . . . . . 10 (𝜑𝑍 ∈ On)
42 oaword1 7519 . . . . . . . . . 10 ((((𝐴𝑜 𝑋) ·𝑜 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ⊆ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍))
4338, 41, 42syl2anc 691 . . . . . . . . 9 (𝜑 → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ⊆ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍))
4420simprd 478 . . . . . . . . 9 (𝜑 → (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍) = 𝐶)
4543, 44sseqtrd 3604 . . . . . . . 8 (𝜑 → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ⊆ 𝐶)
4636, 45sstrd 3578 . . . . . . 7 (𝜑 → (𝐴𝑜 𝑋) ⊆ 𝐶)
47 oecl 7504 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
482, 3, 47syl2anc 691 . . . . . . . 8 (𝜑 → (𝐴𝑜 𝐵) ∈ On)
49 ontr2 5689 . . . . . . . 8 (((𝐴𝑜 𝑋) ∈ On ∧ (𝐴𝑜 𝐵) ∈ On) → (((𝐴𝑜 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴𝑜 𝐵)) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵)))
5024, 48, 49syl2anc 691 . . . . . . 7 (𝜑 → (((𝐴𝑜 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴𝑜 𝐵)) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵)))
5146, 6, 50mp2and 711 . . . . . 6 (𝜑 → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵))
529simpld 474 . . . . . . 7 (𝜑𝐴 ∈ (On ∖ 2𝑜))
53 oeord 7555 . . . . . . 7 ((𝑋 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑋𝐵 ↔ (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵)))
5422, 3, 52, 53syl3anc 1318 . . . . . 6 (𝜑 → (𝑋𝐵 ↔ (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵)))
5551, 54mpbird 246 . . . . 5 (𝜑𝑋𝐵)
562adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ On)
573adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐵 ∈ On)
58 suppssdm 7195 . . . . . . . . . . . . . . 15 (𝐺 supp ∅) ⊆ dom 𝐺
591, 2, 3cantnfs 8446 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
604, 59mpbid 221 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
6160simpld 474 . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝐵𝐴)
62 fdm 5964 . . . . . . . . . . . . . . . 16 (𝐺:𝐵𝐴 → dom 𝐺 = 𝐵)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐺 = 𝐵)
6458, 63syl5sseq 3616 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
6564sselda 3568 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝐵)
66 onelon 5665 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
6757, 65, 66syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥 ∈ On)
68 oecl 7504 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑜 𝑥) ∈ On)
6956, 67, 68syl2anc 691 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑥) ∈ On)
7061adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺:𝐵𝐴)
7170, 65ffvelrnd 6268 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ 𝐴)
72 onelon 5665 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐺𝑥) ∈ 𝐴) → (𝐺𝑥) ∈ On)
7356, 71, 72syl2anc 691 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ On)
74 ffn 5958 . . . . . . . . . . . . . . 15 (𝐺:𝐵𝐴𝐺 Fn 𝐵)
7561, 74syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐵)
76 0ex 4718 . . . . . . . . . . . . . . 15 ∅ ∈ V
7776a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ V)
78 elsuppfn 7190 . . . . . . . . . . . . . 14 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
7975, 3, 77, 78syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
8079simplbda 652 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ≠ ∅)
81 on0eln0 5697 . . . . . . . . . . . . 13 ((𝐺𝑥) ∈ On → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
8273, 81syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
8380, 82mpbird 246 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ∅ ∈ (𝐺𝑥))
84 omword1 7540 . . . . . . . . . . 11 ((((𝐴𝑜 𝑥) ∈ On ∧ (𝐺𝑥) ∈ On) ∧ ∅ ∈ (𝐺𝑥)) → (𝐴𝑜 𝑥) ⊆ ((𝐴𝑜 𝑥) ·𝑜 (𝐺𝑥)))
8569, 73, 83, 84syl21anc 1317 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑥) ⊆ ((𝐴𝑜 𝑥) ·𝑜 (𝐺𝑥)))
86 eqid 2610 . . . . . . . . . . . 12 OrdIso( E , (𝐺 supp ∅)) = OrdIso( E , (𝐺 supp ∅))
874adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺𝑆)
88 eqid 2610 . . . . . . . . . . . 12 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·𝑜 (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·𝑜 (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)
891, 56, 57, 86, 87, 88, 65cantnfle 8451 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴𝑜 𝑥) ·𝑜 (𝐺𝑥)) ⊆ ((𝐴 CNF 𝐵)‘𝐺))
90 cantnf.v . . . . . . . . . . . 12 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
9190adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
9289, 91sseqtrd 3604 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴𝑜 𝑥) ·𝑜 (𝐺𝑥)) ⊆ 𝑍)
9385, 92sstrd 3578 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑥) ⊆ 𝑍)
9439adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑍 ∈ (𝐴𝑜 𝑋))
9524adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑋) ∈ On)
96 ontr2 5689 . . . . . . . . . 10 (((𝐴𝑜 𝑥) ∈ On ∧ (𝐴𝑜 𝑋) ∈ On) → (((𝐴𝑜 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴𝑜 𝑋)) → (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋)))
9769, 95, 96syl2anc 691 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (((𝐴𝑜 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴𝑜 𝑋)) → (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋)))
9893, 94, 97mp2and 711 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋))
9922adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑋 ∈ On)
10052adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ (On ∖ 2𝑜))
101 oeord 7555 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑥𝑋 ↔ (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋)))
10267, 99, 100, 101syl3anc 1318 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝑥𝑋 ↔ (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋)))
10398, 102mpbird 246 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝑋)
104103ex 449 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) → 𝑥𝑋))
105104ssrdv 3574 . . . . 5 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
106 cantnf.f . . . . 5 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1071, 2, 3, 4, 55, 26, 105, 106cantnfp1 8461 . . . 4 (𝜑 → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺))))
108107simprd 478 . . 3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
10990oveq2d 6565 . . 3 (𝜑 → (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍))
110108, 109, 443eqtrd 2648 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = 𝐶)
1111, 2, 3cantnff 8454 . . . 4 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵))
112 ffn 5958 . . . 4 ((𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵) → (𝐴 CNF 𝐵) Fn 𝑆)
113111, 112syl 17 . . 3 (𝜑 → (𝐴 CNF 𝐵) Fn 𝑆)
114107simpld 474 . . 3 (𝜑𝐹𝑆)
115 fnfvelrn 6264 . . 3 (((𝐴 CNF 𝐵) Fn 𝑆𝐹𝑆) → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
116113, 114, 115syl2anc 691 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
117110, 116eqeltrrd 2689 1 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  c0 3874  ifcif 4036  cop 4131   cuni 4372   cint 4410   class class class wbr 4583  {copab 4642  cmpt 4643   E cep 4947  dom cdm 5038  ran crn 5039  Oncon0 5640  cio 5766   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058   supp csupp 7182  seq𝜔cseqom 7429  1𝑜c1o 7440  2𝑜c2o 7441   +𝑜 coa 7444   ·𝑜 comu 7445  𝑜 coe 7446   finSupp cfsupp 8158  OrdIsocoi 8297   CNF ccnf 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-cnf 8442
This theorem is referenced by:  cantnflem4  8472
  Copyright terms: Public domain W3C validator