Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cantnflem2 | Structured version Visualization version GIF version |
Description: Lemma for cantnf 8473. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
cantnf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑𝑜 𝐵)) |
cantnf.s | ⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) |
cantnf.e | ⊢ (𝜑 → ∅ ∈ 𝐶) |
Ref | Expression |
---|---|
cantnflem2 | ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
2 | cantnfs.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ On) | |
3 | oecl 7504 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜 𝐵) ∈ On) | |
4 | 1, 2, 3 | syl2anc 691 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ↑𝑜 𝐵) ∈ On) |
5 | cantnf.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑𝑜 𝐵)) | |
6 | onelon 5665 | . . . . . . . . 9 ⊢ (((𝐴 ↑𝑜 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴 ↑𝑜 𝐵)) → 𝐶 ∈ On) | |
7 | 4, 5, 6 | syl2anc 691 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ On) |
8 | cantnf.e | . . . . . . . 8 ⊢ (𝜑 → ∅ ∈ 𝐶) | |
9 | ondif1 7468 | . . . . . . . 8 ⊢ (𝐶 ∈ (On ∖ 1𝑜) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) | |
10 | 7, 8, 9 | sylanbrc 695 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (On ∖ 1𝑜)) |
11 | 10 | eldifbd 3553 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐶 ∈ 1𝑜) |
12 | ssel 3562 | . . . . . . 7 ⊢ ((𝐴 ↑𝑜 𝐵) ⊆ 1𝑜 → (𝐶 ∈ (𝐴 ↑𝑜 𝐵) → 𝐶 ∈ 1𝑜)) | |
13 | 5, 12 | syl5com 31 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ↑𝑜 𝐵) ⊆ 1𝑜 → 𝐶 ∈ 1𝑜)) |
14 | 11, 13 | mtod 188 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 ↑𝑜 𝐵) ⊆ 1𝑜) |
15 | oe0m 7485 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (∅ ↑𝑜 𝐵) = (1𝑜 ∖ 𝐵)) | |
16 | 2, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (∅ ↑𝑜 𝐵) = (1𝑜 ∖ 𝐵)) |
17 | difss 3699 | . . . . . . . 8 ⊢ (1𝑜 ∖ 𝐵) ⊆ 1𝑜 | |
18 | 16, 17 | syl6eqss 3618 | . . . . . . 7 ⊢ (𝜑 → (∅ ↑𝑜 𝐵) ⊆ 1𝑜) |
19 | oveq1 6556 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (𝐴 ↑𝑜 𝐵) = (∅ ↑𝑜 𝐵)) | |
20 | 19 | sseq1d 3595 | . . . . . . 7 ⊢ (𝐴 = ∅ → ((𝐴 ↑𝑜 𝐵) ⊆ 1𝑜 ↔ (∅ ↑𝑜 𝐵) ⊆ 1𝑜)) |
21 | 18, 20 | syl5ibrcom 236 | . . . . . 6 ⊢ (𝜑 → (𝐴 = ∅ → (𝐴 ↑𝑜 𝐵) ⊆ 1𝑜)) |
22 | oe1m 7512 | . . . . . . . 8 ⊢ (𝐵 ∈ On → (1𝑜 ↑𝑜 𝐵) = 1𝑜) | |
23 | eqimss 3620 | . . . . . . . 8 ⊢ ((1𝑜 ↑𝑜 𝐵) = 1𝑜 → (1𝑜 ↑𝑜 𝐵) ⊆ 1𝑜) | |
24 | 2, 22, 23 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → (1𝑜 ↑𝑜 𝐵) ⊆ 1𝑜) |
25 | oveq1 6556 | . . . . . . . 8 ⊢ (𝐴 = 1𝑜 → (𝐴 ↑𝑜 𝐵) = (1𝑜 ↑𝑜 𝐵)) | |
26 | 25 | sseq1d 3595 | . . . . . . 7 ⊢ (𝐴 = 1𝑜 → ((𝐴 ↑𝑜 𝐵) ⊆ 1𝑜 ↔ (1𝑜 ↑𝑜 𝐵) ⊆ 1𝑜)) |
27 | 24, 26 | syl5ibrcom 236 | . . . . . 6 ⊢ (𝜑 → (𝐴 = 1𝑜 → (𝐴 ↑𝑜 𝐵) ⊆ 1𝑜)) |
28 | 21, 27 | jaod 394 | . . . . 5 ⊢ (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → (𝐴 ↑𝑜 𝐵) ⊆ 1𝑜)) |
29 | 14, 28 | mtod 188 | . . . 4 ⊢ (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) |
30 | elpri 4145 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1𝑜} → (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) | |
31 | df2o3 7460 | . . . . 5 ⊢ 2𝑜 = {∅, 1𝑜} | |
32 | 30, 31 | eleq2s 2706 | . . . 4 ⊢ (𝐴 ∈ 2𝑜 → (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) |
33 | 29, 32 | nsyl 134 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ 2𝑜) |
34 | 1, 33 | eldifd 3551 | . 2 ⊢ (𝜑 → 𝐴 ∈ (On ∖ 2𝑜)) |
35 | 34, 10 | jca 553 | 1 ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 ∖ cdif 3537 ⊆ wss 3540 ∅c0 3874 {cpr 4127 {copab 4642 dom cdm 5038 ran crn 5039 Oncon0 5640 ‘cfv 5804 (class class class)co 6549 1𝑜c1o 7440 2𝑜c2o 7441 ↑𝑜 coe 7446 CNF ccnf 8441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-omul 7452 df-oexp 7453 |
This theorem is referenced by: cantnflem3 8471 cantnflem4 8472 |
Copyright terms: Public domain | W3C validator |