MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeui Structured version   Visualization version   GIF version

Theorem oeeui 7569
Description: The division algorithm for ordinal exponentiation. (This version of oeeu 7570 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 7552.) (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
oeeu.2 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
oeeu.3 𝑌 = (1st𝑃)
oeeu.4 𝑍 = (2nd𝑃)
Assertion
Ref Expression
oeeui ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜) ∧ 𝐸 ∈ (𝐴𝑜 𝐶)) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oeeui
Dummy variables 𝑎 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3694 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ On)
21adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐴 ∈ On)
32ad2antrr 758 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐴 ∈ On)
4 simprl 790 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐶 ∈ On)
5 oecl 7504 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝑜 𝐶) ∈ On)
63, 4, 5syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝐶) ∈ On)
7 om1 7509 . . . . . . . . . . . . . . 15 ((𝐴𝑜 𝐶) ∈ On → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) = (𝐴𝑜 𝐶))
86, 7syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) = (𝐴𝑜 𝐶))
9 df1o2 7459 . . . . . . . . . . . . . . . 16 1𝑜 = {∅}
10 dif1o 7467 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (𝐴 ∖ 1𝑜) ↔ (𝐷𝐴𝐷 ≠ ∅))
1110simprbi 479 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐴 ∖ 1𝑜) → 𝐷 ≠ ∅)
1211ad2antll 761 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐷 ≠ ∅)
13 eldifi 3694 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐴 ∖ 1𝑜) → 𝐷𝐴)
1413ad2antll 761 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐷𝐴)
15 onelon 5665 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝐷𝐴) → 𝐷 ∈ On)
163, 14, 15syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐷 ∈ On)
17 on0eln0 5697 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ On → (∅ ∈ 𝐷𝐷 ≠ ∅))
1816, 17syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (∅ ∈ 𝐷𝐷 ≠ ∅))
1912, 18mpbird 246 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ∅ ∈ 𝐷)
2019snssd 4281 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → {∅} ⊆ 𝐷)
219, 20syl5eqss 3612 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 1𝑜𝐷)
22 1on 7454 . . . . . . . . . . . . . . . . 17 1𝑜 ∈ On
2322a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 1𝑜 ∈ On)
24 omwordi 7538 . . . . . . . . . . . . . . . 16 ((1𝑜 ∈ On ∧ 𝐷 ∈ On ∧ (𝐴𝑜 𝐶) ∈ On) → (1𝑜𝐷 → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐷)))
2523, 16, 6, 24syl3anc 1318 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (1𝑜𝐷 → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐷)))
2621, 25mpd 15 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐷))
278, 26eqsstr3d 3603 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝐶) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐷))
28 omcl 7503 . . . . . . . . . . . . . . . 16 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐷 ∈ On) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On)
296, 16, 28syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On)
30 simplrl 796 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐸 ∈ (𝐴𝑜 𝐶))
31 onelon 5665 . . . . . . . . . . . . . . . 16 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝐶)) → 𝐸 ∈ On)
326, 30, 31syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐸 ∈ On)
33 oaword1 7519 . . . . . . . . . . . . . . 15 ((((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸))
3429, 32, 33syl2anc 691 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸))
35 simplrr 797 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)
3634, 35sseqtrd 3604 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵)
3727, 36sstrd 3578 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝐶) ⊆ 𝐵)
38 oeeu.1 . . . . . . . . . . . . . . 15 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
3938oeeulem 7568 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝑋 ∈ On ∧ (𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)))
4039simp3d 1068 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
4140ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
4239simp1d 1066 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 ∈ On)
4342ad2antrr 758 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝑋 ∈ On)
44 suceloni 6905 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → suc 𝑋 ∈ On)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc 𝑋 ∈ On)
46 oecl 7504 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝑋 ∈ On) → (𝐴𝑜 suc 𝑋) ∈ On)
473, 45, 46syl2anc 691 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 suc 𝑋) ∈ On)
48 ontr2 5689 . . . . . . . . . . . . 13 (((𝐴𝑜 𝐶) ∈ On ∧ (𝐴𝑜 suc 𝑋) ∈ On) → (((𝐴𝑜 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)) → (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋)))
496, 47, 48syl2anc 691 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)) → (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋)))
5037, 41, 49mp2and 711 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋))
51 simplll 794 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐴 ∈ (On ∖ 2𝑜))
52 oeord 7555 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝐶 ∈ suc 𝑋 ↔ (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋)))
534, 45, 51, 52syl3anc 1318 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐶 ∈ suc 𝑋 ↔ (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋)))
5450, 53mpbird 246 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐶 ∈ suc 𝑋)
55 onsssuc 5730 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋𝐶 ∈ suc 𝑋))
564, 43, 55syl2anc 691 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐶𝑋𝐶 ∈ suc 𝑋))
5754, 56mpbird 246 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐶𝑋)
5839simp2d 1067 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ⊆ 𝐵)
5958ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝑋) ⊆ 𝐵)
60 eloni 5650 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → Ord 𝐴)
613, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → Ord 𝐴)
62 ordsucss 6910 . . . . . . . . . . . . . . . 16 (Ord 𝐴 → (𝐷𝐴 → suc 𝐷𝐴))
6361, 14, 62sylc 63 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc 𝐷𝐴)
64 suceloni 6905 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ On → suc 𝐷 ∈ On)
6516, 64syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc 𝐷 ∈ On)
66 dif20el 7472 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴)
6751, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ∅ ∈ 𝐴)
68 oen0 7553 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐶))
693, 4, 67, 68syl21anc 1317 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ∅ ∈ (𝐴𝑜 𝐶))
70 omword 7537 . . . . . . . . . . . . . . . 16 (((suc 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴𝑜 𝐶) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝐶)) → (suc 𝐷𝐴 ↔ ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
7165, 3, 6, 69, 70syl31anc 1321 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (suc 𝐷𝐴 ↔ ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
7263, 71mpbid 221 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐴))
73 oaord 7514 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ On ∧ (𝐴𝑜 𝐶) ∈ On ∧ ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On) → (𝐸 ∈ (𝐴𝑜 𝐶) ↔ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶))))
7432, 6, 29, 73syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐸 ∈ (𝐴𝑜 𝐶) ↔ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶))))
7530, 74mpbid 221 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶)))
7635, 75eqeltrrd 2689 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶)))
77 odi 7546 . . . . . . . . . . . . . . . . 17 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐷 ∈ On ∧ 1𝑜 ∈ On) → ((𝐴𝑜 𝐶) ·𝑜 (𝐷 +𝑜 1𝑜)) = (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 ((𝐴𝑜 𝐶) ·𝑜 1𝑜)))
786, 16, 23, 77syl3anc 1318 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 (𝐷 +𝑜 1𝑜)) = (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 ((𝐴𝑜 𝐶) ·𝑜 1𝑜)))
79 oa1suc 7498 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ On → (𝐷 +𝑜 1𝑜) = suc 𝐷)
8016, 79syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐷 +𝑜 1𝑜) = suc 𝐷)
8180oveq2d 6565 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 (𝐷 +𝑜 1𝑜)) = ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷))
828oveq2d 6565 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 ((𝐴𝑜 𝐶) ·𝑜 1𝑜)) = (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶)))
8378, 81, 823eqtr3d 2652 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷) = (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶)))
8476, 83eleqtrrd 2691 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷))
8572, 84sseldd 3569 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴))
86 oesuc 7494 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝑜 suc 𝐶) = ((𝐴𝑜 𝐶) ·𝑜 𝐴))
873, 4, 86syl2anc 691 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 suc 𝐶) = ((𝐴𝑜 𝐶) ·𝑜 𝐴))
8885, 87eleqtrrd 2691 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ (𝐴𝑜 suc 𝐶))
89 oecl 7504 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴𝑜 𝑋) ∈ On)
903, 43, 89syl2anc 691 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝑋) ∈ On)
91 suceloni 6905 . . . . . . . . . . . . . . 15 (𝐶 ∈ On → suc 𝐶 ∈ On)
9291ad2antrl 760 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc 𝐶 ∈ On)
93 oecl 7504 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴𝑜 suc 𝐶) ∈ On)
943, 92, 93syl2anc 691 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 suc 𝐶) ∈ On)
95 ontr2 5689 . . . . . . . . . . . . 13 (((𝐴𝑜 𝑋) ∈ On ∧ (𝐴𝑜 suc 𝐶) ∈ On) → (((𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝐶)) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶)))
9690, 94, 95syl2anc 691 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝐶)) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶)))
9759, 88, 96mp2and 711 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶))
98 oeord 7555 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑋 ∈ suc 𝐶 ↔ (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶)))
9943, 92, 51, 98syl3anc 1318 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝑋 ∈ suc 𝐶 ↔ (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶)))
10097, 99mpbird 246 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝑋 ∈ suc 𝐶)
101 onsssuc 5730 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝐶 ∈ On) → (𝑋𝐶𝑋 ∈ suc 𝐶))
10243, 4, 101syl2anc 691 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝑋𝐶𝑋 ∈ suc 𝐶))
103100, 102mpbird 246 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝑋𝐶)
10457, 103eqssd 3585 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐶 = 𝑋)
105104, 16jca 553 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐶 = 𝑋𝐷 ∈ On))
106 simprl 790 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 = 𝑋)
10742ad2antrr 758 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝑋 ∈ On)
108106, 107eqeltrd 2688 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 ∈ On)
1092ad2antrr 758 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐴 ∈ On)
110109, 108, 5syl2anc 691 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 𝐶) ∈ On)
111 simprr 792 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ On)
112110, 111, 28syl2anc 691 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On)
113 simplrl 796 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ (𝐴𝑜 𝐶))
114110, 113, 31syl2anc 691 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ On)
115112, 114, 33syl2anc 691 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸))
116 simplrr 797 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)
117115, 116sseqtrd 3604 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵)
11840ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
119 suceq 5707 . . . . . . . . . . . . . . 15 (𝐶 = 𝑋 → suc 𝐶 = suc 𝑋)
120119ad2antrl 760 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → suc 𝐶 = suc 𝑋)
121120oveq2d 6565 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 suc 𝐶) = (𝐴𝑜 suc 𝑋))
122109, 108, 86syl2anc 691 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 suc 𝐶) = ((𝐴𝑜 𝐶) ·𝑜 𝐴))
123121, 122eqtr3d 2646 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 suc 𝑋) = ((𝐴𝑜 𝐶) ·𝑜 𝐴))
124118, 123eleqtrd 2690 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴))
125 omcl 7503 . . . . . . . . . . . . 13 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴𝑜 𝐶) ·𝑜 𝐴) ∈ On)
126110, 109, 125syl2anc 691 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐴) ∈ On)
127 ontr2 5689 . . . . . . . . . . . 12 ((((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On ∧ ((𝐴𝑜 𝐶) ·𝑜 𝐴) ∈ On) → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
128112, 126, 127syl2anc 691 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
129117, 124, 128mp2and 711 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴))
13066adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∅ ∈ 𝐴)
131130ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ 𝐴)
132109, 108, 131, 68syl21anc 1317 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ (𝐴𝑜 𝐶))
133 omord2 7534 . . . . . . . . . . 11 (((𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴𝑜 𝐶) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝐶)) → (𝐷𝐴 ↔ ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
134111, 109, 110, 132, 133syl31anc 1321 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷𝐴 ↔ ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
135129, 134mpbird 246 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷𝐴)
136106oveq2d 6565 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 𝐶) = (𝐴𝑜 𝑋))
13758ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 𝑋) ⊆ 𝐵)
138136, 137eqsstrd 3602 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 𝐶) ⊆ 𝐵)
139 eldifi 3694 . . . . . . . . . . . . . 14 (𝐵 ∈ (On ∖ 1𝑜) → 𝐵 ∈ On)
140139adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ On)
141140ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ On)
142 ontri1 5674 . . . . . . . . . . . 12 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝑜 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴𝑜 𝐶)))
143110, 141, 142syl2anc 691 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴𝑜 𝐶)))
144138, 143mpbid 221 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ¬ 𝐵 ∈ (𝐴𝑜 𝐶))
145 om0 7484 . . . . . . . . . . . . . . . . 17 ((𝐴𝑜 𝐶) ∈ On → ((𝐴𝑜 𝐶) ·𝑜 ∅) = ∅)
146110, 145syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 ∅) = ∅)
147146oveq1d 6564 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸) = (∅ +𝑜 𝐸))
148 oa0r 7505 . . . . . . . . . . . . . . . 16 (𝐸 ∈ On → (∅ +𝑜 𝐸) = 𝐸)
149114, 148syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (∅ +𝑜 𝐸) = 𝐸)
150147, 149eqtrd 2644 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸) = 𝐸)
151150, 113eqeltrd 2688 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶))
152 oveq2 6557 . . . . . . . . . . . . . . 15 (𝐷 = ∅ → ((𝐴𝑜 𝐶) ·𝑜 𝐷) = ((𝐴𝑜 𝐶) ·𝑜 ∅))
153152oveq1d 6564 . . . . . . . . . . . . . 14 (𝐷 = ∅ → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸))
154153eleq1d 2672 . . . . . . . . . . . . 13 (𝐷 = ∅ → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶) ↔ (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶)))
155151, 154syl5ibrcom 236 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶)))
156116eleq1d 2672 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶) ↔ 𝐵 ∈ (𝐴𝑜 𝐶)))
157155, 156sylibd 228 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → 𝐵 ∈ (𝐴𝑜 𝐶)))
158157necon3bd 2796 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (¬ 𝐵 ∈ (𝐴𝑜 𝐶) → 𝐷 ≠ ∅))
159144, 158mpd 15 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ≠ ∅)
160135, 159, 10sylanbrc 695 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ (𝐴 ∖ 1𝑜))
161108, 160jca 553 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)))
162105, 161impbida 873 . . . . . 6 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ↔ (𝐶 = 𝑋𝐷 ∈ On)))
163162ex 449 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ((𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ↔ (𝐶 = 𝑋𝐷 ∈ On))))
164163pm5.32rd 670 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ ((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))))
165 anass 679 . . . 4 (((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))))
166164, 165syl6bb 275 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))))
167 3anass 1035 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))
168 oveq2 6557 . . . . . . . 8 (𝐶 = 𝑋 → (𝐴𝑜 𝐶) = (𝐴𝑜 𝑋))
169168eleq2d 2673 . . . . . . 7 (𝐶 = 𝑋 → (𝐸 ∈ (𝐴𝑜 𝐶) ↔ 𝐸 ∈ (𝐴𝑜 𝑋)))
170168oveq1d 6564 . . . . . . . . 9 (𝐶 = 𝑋 → ((𝐴𝑜 𝐶) ·𝑜 𝐷) = ((𝐴𝑜 𝑋) ·𝑜 𝐷))
171170oveq1d 6564 . . . . . . . 8 (𝐶 = 𝑋 → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸))
172171eqeq1d 2612 . . . . . . 7 (𝐶 = 𝑋 → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))
173169, 1723anbi23d 1394 . . . . . 6 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))
174167, 173syl5bbr 273 . . . . 5 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))
1752, 42, 89syl2anc 691 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ∈ On)
176 oen0 7553 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑋 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝑋))
1772, 42, 130, 176syl21anc 1317 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∅ ∈ (𝐴𝑜 𝑋))
178 ne0i 3880 . . . . . . 7 (∅ ∈ (𝐴𝑜 𝑋) → (𝐴𝑜 𝑋) ≠ ∅)
179177, 178syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ≠ ∅)
180 omeu 7552 . . . . . . 7 (((𝐴𝑜 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝑜 𝑋) ≠ ∅) → ∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
181 oeeu.2 . . . . . . . . 9 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
182 opeq1 4340 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → ⟨𝑦, 𝑧⟩ = ⟨𝑑, 𝑧⟩)
183182eqeq2d 2620 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → (𝑤 = ⟨𝑦, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑧⟩))
184 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑦 = 𝑑 → ((𝐴𝑜 𝑋) ·𝑜 𝑦) = ((𝐴𝑜 𝑋) ·𝑜 𝑑))
185184oveq1d 6564 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧))
186185eqeq1d 2612 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → ((((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = 𝐵))
187183, 186anbi12d 743 . . . . . . . . . . . 12 (𝑦 = 𝑑 → ((𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = 𝐵)))
188 opeq2 4341 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → ⟨𝑑, 𝑧⟩ = ⟨𝑑, 𝑒⟩)
189188eqeq2d 2620 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → (𝑤 = ⟨𝑑, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑒⟩))
190 oveq2 6557 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒))
191190eqeq1d 2612 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → ((((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
192189, 191anbi12d 743 . . . . . . . . . . . 12 (𝑧 = 𝑒 → ((𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵)))
193187, 192cbvrex2v 3156 . . . . . . . . . . 11 (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
194 eqeq1 2614 . . . . . . . . . . . . 13 (𝑤 = 𝑎 → (𝑤 = ⟨𝑑, 𝑒⟩ ↔ 𝑎 = ⟨𝑑, 𝑒⟩))
195194anbi1d 737 . . . . . . . . . . . 12 (𝑤 = 𝑎 → ((𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵) ↔ (𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵)))
1961952rexbidv 3039 . . . . . . . . . . 11 (𝑤 = 𝑎 → (∃𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵)))
197193, 196syl5bb 271 . . . . . . . . . 10 (𝑤 = 𝑎 → (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵)))
198197cbviotav 5774 . . . . . . . . 9 (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
199181, 198eqtri 2632 . . . . . . . 8 𝑃 = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
200 oeeu.3 . . . . . . . 8 𝑌 = (1st𝑃)
201 oeeu.4 . . . . . . . 8 𝑍 = (2nd𝑃)
202 oveq2 6557 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝐴𝑜 𝑋) ·𝑜 𝑑) = ((𝐴𝑜 𝑋) ·𝑜 𝐷))
203202oveq1d 6564 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝑒))
204203eqeq1d 2612 . . . . . . . 8 (𝑑 = 𝐷 → ((((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝑒) = 𝐵))
205 oveq2 6557 . . . . . . . . 9 (𝑒 = 𝐸 → (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝑒) = (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸))
206205eqeq1d 2612 . . . . . . . 8 (𝑒 = 𝐸 → ((((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝑒) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))
207199, 200, 201, 204, 206opiota 7118 . . . . . . 7 (∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
208180, 207syl 17 . . . . . 6 (((𝐴𝑜 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝑜 𝑋) ≠ ∅) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
209175, 140, 179, 208syl3anc 1318 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
210174, 209sylan9bbr 733 . . . 4 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ 𝐶 = 𝑋) → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
211210pm5.32da 671 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ((𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
212166, 211bitrd 267 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
213 3an4anass 1283 . 2 (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜) ∧ 𝐸 ∈ (𝐴𝑜 𝐶)) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))
214 3anass 1035 . 2 ((𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍)))
215212, 213, 2143bitr4g 302 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜) ∧ 𝐸 ∈ (𝐴𝑜 𝐶)) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  ∃!weu 2458  wne 2780  wrex 2897  {crab 2900  cdif 3537  wss 3540  c0 3874  {csn 4125  cop 4131   cuni 4372   cint 4410  Ord word 5639  Oncon0 5640  suc csuc 5642  cio 5766  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  1𝑜c1o 7440  2𝑜c2o 7441   +𝑜 coa 7444   ·𝑜 comu 7445  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453
This theorem is referenced by:  oeeu  7570  cantnflem3  8471  cantnflem4  8472
  Copyright terms: Public domain W3C validator