MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeu Structured version   Visualization version   GIF version

Theorem oeeu 7570
Description: The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.)
Assertion
Ref Expression
oeeu ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem oeeu
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . 6 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}
21oeeulem 7568 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ On ∧ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})))
32simp1d 1066 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ On)
4 elex 3185 . . . 4 ( {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ On → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ V)
53, 4syl 17 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ V)
6 fvex 6113 . . . 4 (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) ∈ V
76a1i 11 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) ∈ V)
8 fvex 6113 . . . 4 (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) ∈ V
98a1i 11 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) ∈ V)
10 eqid 2610 . . . 4 (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵)) = (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))
11 eqid 2610 . . . 4 (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵)))
12 eqid 2610 . . . 4 (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵)))
131, 10, 11, 12oeeui 7569 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ (𝑥 = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∧ 𝑦 = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) ∧ 𝑧 = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))))))
145, 7, 9, 13euotd 4900 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
15 df-3an 1033 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)))
16 ancom 465 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ↔ (𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))))
1715, 16bitri 263 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ↔ (𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))))
1817anbi1i 727 . . . . . . . . 9 (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ ((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
1918anbi2i 726 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
20 an12 834 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
21 anass 679 . . . . . . . 8 (((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴𝑜 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))))
2219, 20, 213bitri 285 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴𝑜 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))))
2322exbii 1764 . . . . . 6 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴𝑜 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))))
24 df-rex 2902 . . . . . 6 (∃𝑧 ∈ (𝐴𝑜 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴𝑜 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))))
25 r19.42v 3073 . . . . . 6 (∃𝑧 ∈ (𝐴𝑜 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ ∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
2623, 24, 253bitr2i 287 . . . . 5 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ ∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
27262exbii 1765 . . . 4 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ ∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
28 r2ex 3043 . . . 4 (∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ ∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
2927, 28bitr4i 266 . . 3 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
3029eubii 2480 . 2 (∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
3114, 30sylib 207 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  cop 4131  cotp 4133   cuni 4372   cint 4410  Oncon0 5640  suc csuc 5642  cio 5766  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  1𝑜c1o 7440  2𝑜c2o 7441   +𝑜 coa 7444   ·𝑜 comu 7445  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator