MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeulem Structured version   Visualization version   GIF version

Theorem oeeulem 7568
Description: Lemma for oeeu 7570. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
Assertion
Ref Expression
oeeulem ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝑋 ∈ On ∧ (𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem oeeulem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oeeu.1 . . 3 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
2 eldifi 3694 . . . . . . . 8 (𝐵 ∈ (On ∖ 1𝑜) → 𝐵 ∈ On)
32adantl 481 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ On)
4 suceloni 6905 . . . . . . 7 (𝐵 ∈ On → suc 𝐵 ∈ On)
53, 4syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → suc 𝐵 ∈ On)
6 oeworde 7560 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2𝑜) ∧ suc 𝐵 ∈ On) → suc 𝐵 ⊆ (𝐴𝑜 suc 𝐵))
75, 6syldan 486 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → suc 𝐵 ⊆ (𝐴𝑜 suc 𝐵))
8 sucidg 5720 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
93, 8syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ suc 𝐵)
107, 9sseldd 3569 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ (𝐴𝑜 suc 𝐵))
11 oveq2 6557 . . . . . . . 8 (𝑥 = suc 𝐵 → (𝐴𝑜 𝑥) = (𝐴𝑜 suc 𝐵))
1211eleq2d 2673 . . . . . . 7 (𝑥 = suc 𝐵 → (𝐵 ∈ (𝐴𝑜 𝑥) ↔ 𝐵 ∈ (𝐴𝑜 suc 𝐵)))
1312rspcev 3282 . . . . . 6 ((suc 𝐵 ∈ On ∧ 𝐵 ∈ (𝐴𝑜 suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴𝑜 𝑥))
145, 10, 13syl2anc 691 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴𝑜 𝑥))
15 onintrab2 6894 . . . . 5 (∃𝑥 ∈ On 𝐵 ∈ (𝐴𝑜 𝑥) ↔ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On)
1614, 15sylib 207 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On)
17 onuni 6885 . . . 4 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On)
1816, 17syl 17 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On)
191, 18syl5eqel 2692 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 ∈ On)
20 sucidg 5720 . . . . . . 7 (𝑋 ∈ On → 𝑋 ∈ suc 𝑋)
2119, 20syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 ∈ suc 𝑋)
22 dif1o 7467 . . . . . . . . . . . . 13 (𝐵 ∈ (On ∖ 1𝑜) ↔ (𝐵 ∈ On ∧ 𝐵 ≠ ∅))
2322simprbi 479 . . . . . . . . . . . 12 (𝐵 ∈ (On ∖ 1𝑜) → 𝐵 ≠ ∅)
2423adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ≠ ∅)
25 ssrab2 3650 . . . . . . . . . . . . . . 15 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ⊆ On
26 rabn0 3912 . . . . . . . . . . . . . . . 16 ({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ≠ ∅ ↔ ∃𝑥 ∈ On 𝐵 ∈ (𝐴𝑜 𝑥))
2714, 26sylibr 223 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ≠ ∅)
28 onint 6887 . . . . . . . . . . . . . . 15 (({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ⊆ On ∧ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ≠ ∅) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
2925, 27, 28sylancr 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
30 eleq1 2676 . . . . . . . . . . . . . 14 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
3129, 30syl5ibcom 234 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ → ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
32 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (𝐴𝑜 𝑥) = (𝐴𝑜 ∅))
3332eleq2d 2673 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (𝐵 ∈ (𝐴𝑜 𝑥) ↔ 𝐵 ∈ (𝐴𝑜 ∅)))
3433elrab 3331 . . . . . . . . . . . . . . 15 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ (∅ ∈ On ∧ 𝐵 ∈ (𝐴𝑜 ∅)))
3534simprbi 479 . . . . . . . . . . . . . 14 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → 𝐵 ∈ (𝐴𝑜 ∅))
36 eldifi 3694 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ On)
3736adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐴 ∈ On)
38 oe0 7489 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)
3937, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 ∅) = 1𝑜)
4039eleq2d 2673 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐵 ∈ (𝐴𝑜 ∅) ↔ 𝐵 ∈ 1𝑜))
41 el1o 7466 . . . . . . . . . . . . . . 15 (𝐵 ∈ 1𝑜𝐵 = ∅)
4240, 41syl6bb 275 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐵 ∈ (𝐴𝑜 ∅) ↔ 𝐵 = ∅))
4335, 42syl5ib 233 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → 𝐵 = ∅))
4431, 43syld 46 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ → 𝐵 = ∅))
4544necon3ad 2795 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐵 ≠ ∅ → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅))
4624, 45mpd 15 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅)
47 limuni 5702 . . . . . . . . . . . . . . . . 17 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
4847, 1syl6eqr 2662 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = 𝑋)
4948adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = 𝑋)
5029adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
5149, 50eqeltrrd 2689 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
52 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝐴𝑜 𝑦) = (𝐴𝑜 𝑋))
5352eleq2d 2673 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝐵 ∈ (𝐴𝑜 𝑦) ↔ 𝐵 ∈ (𝐴𝑜 𝑋)))
54 oveq2 6557 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝑦))
5554eleq2d 2673 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐵 ∈ (𝐴𝑜 𝑥) ↔ 𝐵 ∈ (𝐴𝑜 𝑦)))
5655cbvrabv 3172 . . . . . . . . . . . . . . . 16 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑦)}
5753, 56elrab2 3333 . . . . . . . . . . . . . . 15 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ (𝑋 ∈ On ∧ 𝐵 ∈ (𝐴𝑜 𝑋)))
5857simprbi 479 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → 𝐵 ∈ (𝐴𝑜 𝑋))
5951, 58syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝐵 ∈ (𝐴𝑜 𝑋))
6036ad2antrr 758 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝐴 ∈ On)
61 limeq 5652 . . . . . . . . . . . . . . . . 17 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = 𝑋 → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ Lim 𝑋))
6248, 61syl 17 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ Lim 𝑋))
6362ibi 255 . . . . . . . . . . . . . . 15 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → Lim 𝑋)
6419, 63anim12i 588 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → (𝑋 ∈ On ∧ Lim 𝑋))
65 dif20el 7472 . . . . . . . . . . . . . . 15 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴)
6665ad2antrr 758 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → ∅ ∈ 𝐴)
67 oelim 7501 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ (𝑋 ∈ On ∧ Lim 𝑋)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑋) = 𝑦𝑋 (𝐴𝑜 𝑦))
6860, 64, 66, 67syl21anc 1317 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → (𝐴𝑜 𝑋) = 𝑦𝑋 (𝐴𝑜 𝑦))
6959, 68eleqtrd 2690 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝐵 𝑦𝑋 (𝐴𝑜 𝑦))
70 eliun 4460 . . . . . . . . . . . 12 (𝐵 𝑦𝑋 (𝐴𝑜 𝑦) ↔ ∃𝑦𝑋 𝐵 ∈ (𝐴𝑜 𝑦))
7169, 70sylib 207 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → ∃𝑦𝑋 𝐵 ∈ (𝐴𝑜 𝑦))
7219adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝑋 ∈ On)
73 onss 6882 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → 𝑋 ⊆ On)
7472, 73syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝑋 ⊆ On)
7574sselda 3568 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) ∧ 𝑦𝑋) → 𝑦 ∈ On)
7649eleq2d 2673 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ 𝑦𝑋))
7776biimpar 501 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) ∧ 𝑦𝑋) → 𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
7855onnminsb 6896 . . . . . . . . . . . . 13 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → ¬ 𝐵 ∈ (𝐴𝑜 𝑦)))
7975, 77, 78sylc 63 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) ∧ 𝑦𝑋) → ¬ 𝐵 ∈ (𝐴𝑜 𝑦))
8079nrexdv 2984 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → ¬ ∃𝑦𝑋 𝐵 ∈ (𝐴𝑜 𝑦))
8171, 80pm2.65da 598 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
82 ioran 510 . . . . . . . . . 10 (¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) ↔ (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∧ ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
8346, 81, 82sylanbrc 695 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
84 eloni 5650 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
85 unizlim 5761 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})))
8616, 84, 853syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})))
8783, 86mtbird 314 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
88 orduniorsuc 6922 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
8916, 84, 883syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
9089ord 391 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
9187, 90mpd 15 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
92 suceq 5707 . . . . . . . 8 (𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
931, 92ax-mp 5 . . . . . . 7 suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
9491, 93syl6reqr 2663 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → suc 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
9521, 94eleqtrd 2690 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
9656inteqi 4414 . . . . 5 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑦)}
9795, 96syl6eleq 2698 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑦)})
9853onnminsb 6896 . . . 4 (𝑋 ∈ On → (𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑦)} → ¬ 𝐵 ∈ (𝐴𝑜 𝑋)))
9919, 97, 98sylc 63 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ 𝐵 ∈ (𝐴𝑜 𝑋))
100 oecl 7504 . . . . 5 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴𝑜 𝑋) ∈ On)
10137, 19, 100syl2anc 691 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ∈ On)
102 ontri1 5674 . . . 4 (((𝐴𝑜 𝑋) ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝑜 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴𝑜 𝑋)))
103101, 3, 102syl2anc 691 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ((𝐴𝑜 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴𝑜 𝑋)))
10499, 103mpbird 246 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ⊆ 𝐵)
10594, 29eqeltrd 2688 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
106 oveq2 6557 . . . . . 6 (𝑦 = suc 𝑋 → (𝐴𝑜 𝑦) = (𝐴𝑜 suc 𝑋))
107106eleq2d 2673 . . . . 5 (𝑦 = suc 𝑋 → (𝐵 ∈ (𝐴𝑜 𝑦) ↔ 𝐵 ∈ (𝐴𝑜 suc 𝑋)))
108107, 56elrab2 3333 . . . 4 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ (suc 𝑋 ∈ On ∧ 𝐵 ∈ (𝐴𝑜 suc 𝑋)))
109108simprbi 479 . . 3 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
110105, 109syl 17 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
11119, 104, 1103jca 1235 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝑋 ∈ On ∧ (𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  cdif 3537  wss 3540  c0 3874   cuni 4372   cint 4410   ciun 4455  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  (class class class)co 6549  1𝑜c1o 7440  2𝑜c2o 7441  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453
This theorem is referenced by:  oeeui  7569  oeeu  7570
  Copyright terms: Public domain W3C validator