MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf Structured version   Visualization version   GIF version

Theorem cantnf 8473
Description: The Cantor Normal Form theorem. The function (𝐴 CNF 𝐵), which maps a finitely supported function from 𝐵 to 𝐴 to the sum ((𝐴𝑜 𝑓(𝑎1)) ∘ 𝑎1) +𝑜 ((𝐴𝑜 𝑓(𝑎2)) ∘ 𝑎2) +𝑜 ... over all indexes 𝑎 < 𝐵 such that 𝑓(𝑎) is nonzero, is an order isomorphism from the ordering 𝑇 of finitely supported functions to the set (𝐴𝑜 𝐵) under the natural order. Setting 𝐴 = ω and letting 𝐵 be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres 8457, implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnf (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnf
Dummy variables 𝑓 𝑐 𝑔 𝑘 𝑡 𝑢 𝑣 𝑎 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 oemapval.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4oemapso 8462 . 2 (𝜑𝑇 Or 𝑆)
6 oecl 7504 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
72, 3, 6syl2anc 691 . . . 4 (𝜑 → (𝐴𝑜 𝐵) ∈ On)
8 eloni 5650 . . . 4 ((𝐴𝑜 𝐵) ∈ On → Ord (𝐴𝑜 𝐵))
97, 8syl 17 . . 3 (𝜑 → Ord (𝐴𝑜 𝐵))
10 ordwe 5653 . . 3 (Ord (𝐴𝑜 𝐵) → E We (𝐴𝑜 𝐵))
11 weso 5029 . . 3 ( E We (𝐴𝑜 𝐵) → E Or (𝐴𝑜 𝐵))
12 sopo 4976 . . 3 ( E Or (𝐴𝑜 𝐵) → E Po (𝐴𝑜 𝐵))
139, 10, 11, 124syl 19 . 2 (𝜑 → E Po (𝐴𝑜 𝐵))
141, 2, 3cantnff 8454 . . 3 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵))
15 frn 5966 . . . . 5 ((𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵) → ran (𝐴 CNF 𝐵) ⊆ (𝐴𝑜 𝐵))
1614, 15syl 17 . . . 4 (𝜑 → ran (𝐴 CNF 𝐵) ⊆ (𝐴𝑜 𝐵))
17 onss 6882 . . . . . . . 8 ((𝐴𝑜 𝐵) ∈ On → (𝐴𝑜 𝐵) ⊆ On)
187, 17syl 17 . . . . . . 7 (𝜑 → (𝐴𝑜 𝐵) ⊆ On)
1918sseld 3567 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ On))
20 eleq1 2676 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝑜 𝐵) ↔ 𝑦 ∈ (𝐴𝑜 𝐵)))
21 eleq1 2676 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2220, 21imbi12d 333 . . . . . . . . 9 (𝑡 = 𝑦 → ((𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) ↔ (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
2322imbi2d 329 . . . . . . . 8 (𝑡 = 𝑦 → ((𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))))
24 r19.21v 2943 . . . . . . . . 9 (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
25 ordelss 5656 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐴𝑜 𝐵) ∧ 𝑡 ∈ (𝐴𝑜 𝐵)) → 𝑡 ⊆ (𝐴𝑜 𝐵))
269, 25sylan 487 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → 𝑡 ⊆ (𝐴𝑜 𝐵))
2726sselda 3568 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) ∧ 𝑦𝑡) → 𝑦 ∈ (𝐴𝑜 𝐵))
28 pm5.5 350 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴𝑜 𝐵) → ((𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2927, 28syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) ∧ 𝑦𝑡) → ((𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
3029ralbidva 2968 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵)))
31 dfss3 3558 . . . . . . . . . . . . . . 15 (𝑡 ⊆ ran (𝐴 CNF 𝐵) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵))
3230, 31syl6bbr 277 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑡 ⊆ ran (𝐴 CNF 𝐵)))
33 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑡 = ∅ → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ ∅ ∈ ran (𝐴 CNF 𝐵)))
342adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐴 ∈ On)
3534adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐴 ∈ On)
363adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐵 ∈ On)
3736adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐵 ∈ On)
38 simplrl 796 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ (𝐴𝑜 𝐵))
39 simplrr 797 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ⊆ ran (𝐴 CNF 𝐵))
407adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴𝑜 𝐵) ∈ On)
41 simprl 790 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ (𝐴𝑜 𝐵))
42 onelon 5665 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑜 𝐵) ∈ On ∧ 𝑡 ∈ (𝐴𝑜 𝐵)) → 𝑡 ∈ On)
4340, 41, 42syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ On)
44 on0eln0 5697 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ On → (∅ ∈ 𝑡𝑡 ≠ ∅))
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝑡𝑡 ≠ ∅))
4645biimpar 501 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → ∅ ∈ 𝑡)
47 eqid 2610 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)} = {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}
48 eqid 2610 . . . . . . . . . . . . . . . . 17 (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡)) = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡))
49 eqid 2610 . . . . . . . . . . . . . . . . 17 (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡))) = (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡)))
50 eqid 2610 . . . . . . . . . . . . . . . . 17 (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡))) = (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡)))
511, 35, 37, 4, 38, 39, 46, 47, 48, 49, 50cantnflem4 8472 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
52 fczsupp0 7211 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 × {∅}) supp ∅) = ∅
5352eqcomi 2619 . . . . . . . . . . . . . . . . . . . 20 ∅ = ((𝐵 × {∅}) supp ∅)
54 oieq2 8301 . . . . . . . . . . . . . . . . . . . 20 (∅ = ((𝐵 × {∅}) supp ∅) → OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅)))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . . 19 OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
56 ne0i 3880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵𝐵 ≠ ∅)
57 ne0i 3880 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ (𝐴𝑜 𝐵) → (𝐴𝑜 𝐵) ≠ ∅)
5857ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴𝑜 𝐵) ≠ ∅)
59 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 = ∅ → (𝐴𝑜 𝐵) = (∅ ↑𝑜 𝐵))
6059neeq1d 2841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 = ∅ → ((𝐴𝑜 𝐵) ≠ ∅ ↔ (∅ ↑𝑜 𝐵) ≠ ∅))
6158, 60syl5ibcom 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 = ∅ → (∅ ↑𝑜 𝐵) ≠ ∅))
6261necon2d 2805 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((∅ ↑𝑜 𝐵) = ∅ → 𝐴 ≠ ∅))
63 on0eln0 5697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
64 oe0m1 7488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑𝑜 𝐵) = ∅))
6563, 64bitr3d 269 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (𝐵 ≠ ∅ ↔ (∅ ↑𝑜 𝐵) = ∅))
6636, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ ↔ (∅ ↑𝑜 𝐵) = ∅))
67 on0eln0 5697 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
6834, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6962, 66, 683imtr4d 282 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ → ∅ ∈ 𝐴))
7056, 69syl5 33 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝑦𝐵 → ∅ ∈ 𝐴))
7170imp 444 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑦𝐵) → ∅ ∈ 𝐴)
72 fconstmpt 5085 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 × {∅}) = (𝑦𝐵 ↦ ∅)
7371, 72fmptd 6292 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}):𝐵𝐴)
74 0ex 4718 . . . . . . . . . . . . . . . . . . . . . . 23 ∅ ∈ V
7574a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∅ ∈ V)
763, 75fczfsuppd 8176 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 × {∅}) finSupp ∅)
7776adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) finSupp ∅)
781, 2, 3cantnfs 8446 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7978adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
8073, 77, 79mpbir2and 959 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) ∈ 𝑆)
81 eqid 2610 . . . . . . . . . . . . . . . . . . 19 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)
821, 34, 36, 55, 80, 81cantnfval 8448 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ∅)))
83 we0 5033 . . . . . . . . . . . . . . . . . . . . . 22 E We ∅
84 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 OrdIso( E , ∅) = OrdIso( E , ∅)
8584oien 8326 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
8674, 83, 85mp2an 704 . . . . . . . . . . . . . . . . . . . . 21 dom OrdIso( E , ∅) ≈ ∅
87 en0 7905 . . . . . . . . . . . . . . . . . . . . 21 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
8886, 87mpbi 219 . . . . . . . . . . . . . . . . . . . 20 dom OrdIso( E , ∅) = ∅
8988fveq2i 6106 . . . . . . . . . . . . . . . . . . 19 (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ∅)) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘∅)
9081seqom0g 7438 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ V → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅)
9174, 90ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅
9289, 91eqtri 2632 . . . . . . . . . . . . . . . . . 18 (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ∅)) = ∅
9382, 92syl6eq 2660 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
9414adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵))
95 ffn 5958 . . . . . . . . . . . . . . . . . . 19 ((𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵) → (𝐴 CNF 𝐵) Fn 𝑆)
9694, 95syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵) Fn 𝑆)
97 fnfvelrn 6264 . . . . . . . . . . . . . . . . . 18 (((𝐴 CNF 𝐵) Fn 𝑆 ∧ (𝐵 × {∅}) ∈ 𝑆) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9896, 80, 97syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9993, 98eqeltrrd 2689 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ∅ ∈ ran (𝐴 CNF 𝐵))
10033, 51, 99pm2.61ne 2867 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
101100expr 641 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → (𝑡 ⊆ ran (𝐴 CNF 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
10232, 101sylbid 229 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
103102ex 449 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
104103com23 84 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
105104a2i 14 . . . . . . . . . 10 ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
106105a1i 11 . . . . . . . . 9 (𝑡 ∈ On → ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10724, 106syl5bi 231 . . . . . . . 8 (𝑡 ∈ On → (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10823, 107tfis2 6948 . . . . . . 7 (𝑡 ∈ On → (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
109108com3l 87 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → (𝑡 ∈ On → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
11019, 109mpdd 42 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
111110ssrdv 3574 . . . 4 (𝜑 → (𝐴𝑜 𝐵) ⊆ ran (𝐴 CNF 𝐵))
11216, 111eqssd 3585 . . 3 (𝜑 → ran (𝐴 CNF 𝐵) = (𝐴𝑜 𝐵))
113 dffo2 6032 . . 3 ((𝐴 CNF 𝐵):𝑆onto→(𝐴𝑜 𝐵) ↔ ((𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵) ∧ ran (𝐴 CNF 𝐵) = (𝐴𝑜 𝐵)))
11414, 112, 113sylanbrc 695 . 2 (𝜑 → (𝐴 CNF 𝐵):𝑆onto→(𝐴𝑜 𝐵))
1152adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐴 ∈ On)
1163adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐵 ∈ On)
117 fveq2 6103 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑥𝑧) = (𝑥𝑡))
118 fveq2 6103 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑦𝑧) = (𝑦𝑡))
119117, 118eleq12d 2682 . . . . . . . . . . 11 (𝑧 = 𝑡 → ((𝑥𝑧) ∈ (𝑦𝑧) ↔ (𝑥𝑡) ∈ (𝑦𝑡)))
120 eleq1 2676 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → (𝑧𝑤𝑡𝑤))
121120imbi1d 330 . . . . . . . . . . . 12 (𝑧 = 𝑡 → ((𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
122121ralbidv 2969 . . . . . . . . . . 11 (𝑧 = 𝑡 → (∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
123119, 122anbi12d 743 . . . . . . . . . 10 (𝑧 = 𝑡 → (((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
124123cbvrexv 3148 . . . . . . . . 9 (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
125 fveq1 6102 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑡) = (𝑢𝑡))
126 fveq1 6102 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (𝑦𝑡) = (𝑣𝑡))
127 eleq12 2678 . . . . . . . . . . . 12 (((𝑥𝑡) = (𝑢𝑡) ∧ (𝑦𝑡) = (𝑣𝑡)) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
128125, 126, 127syl2an 493 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
129 fveq1 6102 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥𝑤) = (𝑢𝑤))
130 fveq1 6102 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝑦𝑤) = (𝑣𝑤))
131129, 130eqeqan12d 2626 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑤) = (𝑦𝑤) ↔ (𝑢𝑤) = (𝑣𝑤)))
132131imbi2d 329 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
133132ralbidv 2969 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → (∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
134128, 133anbi12d 743 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
135134rexbidv 3034 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
136124, 135syl5bb 271 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
137136cbvopabv 4654 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
1384, 137eqtri 2632 . . . . . 6 𝑇 = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
139 simprll 798 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑆)
140 simprlr 799 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑔𝑆)
141 simprr 792 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑇𝑔)
142 eqid 2610 . . . . . 6 {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)} = {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)}
143 eqid 2610 . . . . . 6 OrdIso( E , (𝑔 supp ∅)) = OrdIso( E , (𝑔 supp ∅))
144 eqid 2610 . . . . . 6 seq𝜔((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·𝑜 (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +𝑜 𝑡)), ∅) = seq𝜔((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·𝑜 (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +𝑜 𝑡)), ∅)
1451, 115, 116, 138, 139, 140, 141, 142, 143, 144cantnflem1 8469 . . . . 5 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
146 fvex 6113 . . . . . 6 ((𝐴 CNF 𝐵)‘𝑔) ∈ V
147146epelc 4951 . . . . 5 (((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔) ↔ ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
148145, 147sylibr 223 . . . 4 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))
149148expr 641 . . 3 ((𝜑 ∧ (𝑓𝑆𝑔𝑆)) → (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
150149ralrimivva 2954 . 2 (𝜑 → ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
151 soisoi 6478 . 2 (((𝑇 Or 𝑆 ∧ E Po (𝐴𝑜 𝐵)) ∧ ((𝐴 CNF 𝐵):𝑆onto→(𝐴𝑜 𝐵) ∧ ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))) → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)))
1525, 13, 114, 150, 151syl22anc 1319 1 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  {csn 4125  cop 4131   cuni 4372   cint 4410   class class class wbr 4583  {copab 4642   E cep 4947   Po wpo 4957   Or wor 4958   We wwe 4996   × cxp 5036  dom cdm 5038  ran crn 5039  Ord word 5639  Oncon0 5640  cio 5766   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804   Isom wiso 5805  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058   supp csupp 7182  seq𝜔cseqom 7429   +𝑜 coa 7444   ·𝑜 comu 7445  𝑜 coe 7446  cen 7838   finSupp cfsupp 8158  OrdIsocoi 8297   CNF ccnf 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-cnf 8442
This theorem is referenced by:  oemapwe  8474  cantnffval2  8475  cantnff1o  8476
  Copyright terms: Public domain W3C validator