HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atom1d Structured version   Visualization version   GIF version

Theorem atom1d 28596
Description: The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of [BeltramettiCassinelli] p. 107. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atom1d (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})))
Distinct variable group:   𝑥,𝐴

Proof of Theorem atom1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elat2 28583 . . . 4 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))))
2 chne0 27737 . . . . . 6 (𝐴C → (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0))
3 nfv 1830 . . . . . . 7 𝑥 𝐴C
4 nfv 1830 . . . . . . . 8 𝑥𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0))
5 nfre1 2988 . . . . . . . 8 𝑥𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))
64, 5nfim 1813 . . . . . . 7 𝑥(∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
7 chel 27471 . . . . . . . . . . 11 ((𝐴C𝑥𝐴) → 𝑥 ∈ ℋ)
87adantrr 749 . . . . . . . . . 10 ((𝐴C ∧ (𝑥𝐴𝑥 ≠ 0)) → 𝑥 ∈ ℋ)
98adantrr 749 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝑥 ∈ ℋ)
10 simprlr 799 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝑥 ≠ 0)
11 h1dn0 27795 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ≠ 0)
127, 11sylan 487 . . . . . . . . . . . . 13 (((𝐴C𝑥𝐴) ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ≠ 0)
1312anasss 677 . . . . . . . . . . . 12 ((𝐴C ∧ (𝑥𝐴𝑥 ≠ 0)) → (⊥‘(⊥‘{𝑥})) ≠ 0)
1413adantrr 749 . . . . . . . . . . 11 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (⊥‘(⊥‘{𝑥})) ≠ 0)
15 ch1dle 28595 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥𝐴) → (⊥‘(⊥‘{𝑥})) ⊆ 𝐴)
16 snssi 4280 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → {𝑥} ⊆ ℋ)
17 occl 27547 . . . . . . . . . . . . . . . . . 18 ({𝑥} ⊆ ℋ → (⊥‘{𝑥}) ∈ C )
187, 16, 173syl 18 . . . . . . . . . . . . . . . . 17 ((𝐴C𝑥𝐴) → (⊥‘{𝑥}) ∈ C )
19 choccl 27549 . . . . . . . . . . . . . . . . 17 ((⊥‘{𝑥}) ∈ C → (⊥‘(⊥‘{𝑥})) ∈ C )
20 sseq1 3589 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦𝐴 ↔ (⊥‘(⊥‘{𝑥})) ⊆ 𝐴))
21 eqeq1 2614 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦 = 𝐴 ↔ (⊥‘(⊥‘{𝑥})) = 𝐴))
22 eqeq1 2614 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦 = 0 ↔ (⊥‘(⊥‘{𝑥})) = 0))
2321, 22orbi12d 742 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (⊥‘(⊥‘{𝑥})) → ((𝑦 = 𝐴𝑦 = 0) ↔ ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0)))
2420, 23imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑦 = (⊥‘(⊥‘{𝑥})) → ((𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) ↔ ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2524rspcv 3278 . . . . . . . . . . . . . . . . 17 ((⊥‘(⊥‘{𝑥})) ∈ C → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2618, 19, 253syl 18 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥𝐴) → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2715, 26mpid 43 . . . . . . . . . . . . . . 15 ((𝐴C𝑥𝐴) → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0)))
2827impr 647 . . . . . . . . . . . . . 14 ((𝐴C ∧ (𝑥𝐴 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))
2928adantrlr 755 . . . . . . . . . . . . 13 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))
3029ord 391 . . . . . . . . . . . 12 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (¬ (⊥‘(⊥‘{𝑥})) = 𝐴 → (⊥‘(⊥‘{𝑥})) = 0))
31 nne 2786 . . . . . . . . . . . 12 (¬ (⊥‘(⊥‘{𝑥})) ≠ 0 ↔ (⊥‘(⊥‘{𝑥})) = 0)
3230, 31syl6ibr 241 . . . . . . . . . . 11 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (¬ (⊥‘(⊥‘{𝑥})) = 𝐴 → ¬ (⊥‘(⊥‘{𝑥})) ≠ 0))
3314, 32mt4d 151 . . . . . . . . . 10 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (⊥‘(⊥‘{𝑥})) = 𝐴)
3433eqcomd 2616 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝐴 = (⊥‘(⊥‘{𝑥})))
35 rspe 2986 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
369, 10, 34, 35syl12anc 1316 . . . . . . . 8 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
3736exp44 639 . . . . . . 7 (𝐴C → (𝑥𝐴 → (𝑥 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))))))
383, 6, 37rexlimd 3008 . . . . . 6 (𝐴C → (∃𝑥𝐴 𝑥 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))))
392, 38sylbid 229 . . . . 5 (𝐴C → (𝐴 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))))
4039imp32 448 . . . 4 ((𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
411, 40sylbi 206 . . 3 (𝐴 ∈ HAtoms → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
42 h1da 28592 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ∈ HAtoms)
43 eleq1 2676 . . . . . . 7 (𝐴 = (⊥‘(⊥‘{𝑥})) → (𝐴 ∈ HAtoms ↔ (⊥‘(⊥‘{𝑥})) ∈ HAtoms))
4442, 43syl5ibr 235 . . . . . 6 (𝐴 = (⊥‘(⊥‘{𝑥})) → ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → 𝐴 ∈ HAtoms))
4544expdcom 454 . . . . 5 (𝑥 ∈ ℋ → (𝑥 ≠ 0 → (𝐴 = (⊥‘(⊥‘{𝑥})) → 𝐴 ∈ HAtoms)))
4645impd 446 . . . 4 (𝑥 ∈ ℋ → ((𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms))
4746rexlimiv 3009 . . 3 (∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms)
4841, 47impbii 198 . 2 (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
49 spansn 27802 . . . . 5 (𝑥 ∈ ℋ → (span‘{𝑥}) = (⊥‘(⊥‘{𝑥})))
5049eqeq2d 2620 . . . 4 (𝑥 ∈ ℋ → (𝐴 = (span‘{𝑥}) ↔ 𝐴 = (⊥‘(⊥‘{𝑥}))))
5150anbi2d 736 . . 3 (𝑥 ∈ ℋ → ((𝑥 ≠ 0𝐴 = (span‘{𝑥})) ↔ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))))
5251rexbiia 3022 . 2 (∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})) ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
5348, 52bitr4i 266 1 (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  {csn 4125  cfv 5804  chil 27160  0c0v 27165   C cch 27170  cort 27171  spancspn 27173  0c0h 27176  HAtomscat 27206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326  ax-hcompl 27443
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-lm 20843  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cfil 22861  df-cau 22862  df-cmet 22863  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-ssp 26961  df-ph 27052  df-cbn 27103  df-hnorm 27209  df-hba 27210  df-hvsub 27212  df-hlim 27213  df-hcau 27214  df-sh 27448  df-ch 27462  df-oc 27493  df-ch0 27494  df-span 27552  df-cv 28522  df-at 28581
This theorem is referenced by:  superpos  28597  chcv1  28598  chjatom  28600
  Copyright terms: Public domain W3C validator