Step | Hyp | Ref
| Expression |
1 | | atom1d 28596 |
. . 3
⊢ (𝐴 ∈ HAtoms ↔
∃𝑦 ∈ ℋ
(𝑦 ≠
0ℎ ∧ 𝐴 = (span‘{𝑦}))) |
2 | | atom1d 28596 |
. . 3
⊢ (𝐵 ∈ HAtoms ↔
∃𝑧 ∈ ℋ
(𝑧 ≠
0ℎ ∧ 𝐵 = (span‘{𝑧}))) |
3 | | reeanv 3086 |
. . . 4
⊢
(∃𝑦 ∈
ℋ ∃𝑧 ∈
ℋ ((𝑦 ≠
0ℎ ∧ 𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) ↔ (∃𝑦 ∈ ℋ (𝑦 ≠ 0ℎ ∧
𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0ℎ ∧
𝐵 = (span‘{𝑧})))) |
4 | | an4 861 |
. . . . . 6
⊢ (((𝑦 ≠ 0ℎ ∧
𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) ↔ ((𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ)
∧ (𝐴 =
(span‘{𝑦}) ∧
𝐵 = (span‘{𝑧})))) |
5 | | neeq1 2844 |
. . . . . . . . . 10
⊢ (𝐴 = (span‘{𝑦}) → (𝐴 ≠ 𝐵 ↔ (span‘{𝑦}) ≠ 𝐵)) |
6 | | neeq2 2845 |
. . . . . . . . . 10
⊢ (𝐵 = (span‘{𝑧}) → ((span‘{𝑦}) ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧}))) |
7 | 5, 6 | sylan9bb 732 |
. . . . . . . . 9
⊢ ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴 ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧}))) |
8 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 ↔ (span‘{𝑦}) ≠ (span‘{𝑧}))) |
9 | | hvaddcl 27253 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 +ℎ 𝑧) ∈
ℋ) |
10 | 9 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧
(span‘{𝑦}) ≠
(span‘{𝑧})) →
(𝑦 +ℎ
𝑧) ∈
ℋ) |
11 | | hvaddeq0 27310 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) = 0ℎ ↔
𝑦 = (-1
·ℎ 𝑧))) |
12 | | sneq 4135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (-1
·ℎ 𝑧) → {𝑦} = {(-1 ·ℎ
𝑧)}) |
13 | 12 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (-1
·ℎ 𝑧) → (span‘{𝑦}) = (span‘{(-1
·ℎ 𝑧)})) |
14 | | neg1cn 11001 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -1 ∈
ℂ |
15 | | neg1ne0 11003 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -1 ≠
0 |
16 | | spansncol 27811 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℋ ∧ -1 ∈
ℂ ∧ -1 ≠ 0) → (span‘{(-1
·ℎ 𝑧)}) = (span‘{𝑧})) |
17 | 14, 15, 16 | mp3an23 1408 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℋ →
(span‘{(-1 ·ℎ 𝑧)}) = (span‘{𝑧})) |
18 | 13, 17 | sylan9eqr 2666 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 = (-1
·ℎ 𝑧)) → (span‘{𝑦}) = (span‘{𝑧})) |
19 | 18 | ex 449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℋ → (𝑦 = (-1
·ℎ 𝑧) → (span‘{𝑦}) = (span‘{𝑧}))) |
20 | 19 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 = (-1
·ℎ 𝑧) → (span‘{𝑦}) = (span‘{𝑧}))) |
21 | 11, 20 | sylbid 229 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) = 0ℎ →
(span‘{𝑦}) =
(span‘{𝑧}))) |
22 | 21 | necon3d 2803 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{𝑦}) ≠
(span‘{𝑧}) →
(𝑦 +ℎ
𝑧) ≠
0ℎ)) |
23 | 22 | imp 444 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧
(span‘{𝑦}) ≠
(span‘{𝑧})) →
(𝑦 +ℎ
𝑧) ≠
0ℎ) |
24 | | spansna 28593 |
. . . . . . . . . . . . 13
⊢ (((𝑦 +ℎ 𝑧) ∈ ℋ ∧ (𝑦 +ℎ 𝑧) ≠ 0ℎ)
→ (span‘{(𝑦
+ℎ 𝑧)})
∈ HAtoms) |
25 | 10, 23, 24 | syl2anc 691 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧
(span‘{𝑦}) ≠
(span‘{𝑧})) →
(span‘{(𝑦
+ℎ 𝑧)})
∈ HAtoms) |
26 | 25 | adantlr 747 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ∈ HAtoms) |
27 | 26 | adantlr 747 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ∈ HAtoms) |
28 | | eqeq2 2621 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 +ℎ 𝑧)}) = 𝐴 ↔ (span‘{(𝑦 +ℎ 𝑧)}) = (span‘{𝑦}))) |
29 | 28 | biimpd 218 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 = (span‘{𝑦}) → ((span‘{(𝑦 +ℎ 𝑧)}) = 𝐴 → (span‘{(𝑦 +ℎ 𝑧)}) = (span‘{𝑦}))) |
30 | | spansneleqi 27812 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 +ℎ 𝑧) ∈ ℋ →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
(𝑦 +ℎ
𝑧) ∈
(span‘{𝑦}))) |
31 | 9, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
(𝑦 +ℎ
𝑧) ∈
(span‘{𝑦}))) |
32 | | elspansn 27809 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℋ → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦))) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑦}) ↔ ∃𝑣 ∈ ℂ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦))) |
34 | | addcl 9897 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑣 ∈ ℂ ∧ -1 ∈
ℂ) → (𝑣 + -1)
∈ ℂ) |
35 | 14, 34 | mpan2 703 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 ∈ ℂ → (𝑣 + -1) ∈
ℂ) |
36 | 35 | ad2antlr 759 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → (𝑣 + -1) ∈ ℂ) |
37 | | hvmulcl 27254 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑣
·ℎ 𝑦) ∈ ℋ) |
38 | 37 | ancoms 468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣
·ℎ 𝑦) ∈ ℋ) |
39 | 38 | adantlr 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣
·ℎ 𝑦) ∈ ℋ) |
40 | | simpll 786 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑦 ∈
ℋ) |
41 | | simplr 788 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → 𝑧 ∈
ℋ) |
42 | | hvsubadd 27318 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑣
·ℎ 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑣 ·ℎ 𝑦) −ℎ
𝑦) = 𝑧 ↔ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦))) |
43 | 39, 40, 41, 42 | syl3anc 1318 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣
·ℎ 𝑦) −ℎ 𝑦) = 𝑧 ↔ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦))) |
44 | 43 | biimpar 501 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → ((𝑣 ·ℎ 𝑦) −ℎ
𝑦) = 𝑧) |
45 | | hvsubval 27257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑣
·ℎ 𝑦) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑣 ·ℎ 𝑦) −ℎ
𝑦) = ((𝑣 ·ℎ 𝑦) +ℎ (-1
·ℎ 𝑦))) |
46 | 37, 45 | sylancom 698 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣
·ℎ 𝑦) −ℎ 𝑦) = ((𝑣 ·ℎ 𝑦) +ℎ (-1
·ℎ 𝑦))) |
47 | | ax-hvdistr2 27250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑣 ∈ ℂ ∧ -1 ∈
ℂ ∧ 𝑦 ∈
ℋ) → ((𝑣 + -1)
·ℎ 𝑦) = ((𝑣 ·ℎ 𝑦) +ℎ (-1
·ℎ 𝑦))) |
48 | 14, 47 | mp3an2 1404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣 + -1)
·ℎ 𝑦) = ((𝑣 ·ℎ 𝑦) +ℎ (-1
·ℎ 𝑦))) |
49 | 46, 48 | eqtr4d 2647 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑣
·ℎ 𝑦) −ℎ 𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
50 | 49 | ancoms 468 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣
·ℎ 𝑦) −ℎ 𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
51 | 50 | adantlr 747 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣
·ℎ 𝑦) −ℎ 𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
52 | 51 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → ((𝑣 ·ℎ 𝑦) −ℎ
𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
53 | 44, 52 | eqtr3d 2646 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → 𝑧 = ((𝑣 + -1) ·ℎ
𝑦)) |
54 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝑣 + -1) → (𝑤 ·ℎ 𝑦) = ((𝑣 + -1) ·ℎ
𝑦)) |
55 | 54 | eqeq2d 2620 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑣 + -1) → (𝑧 = (𝑤 ·ℎ 𝑦) ↔ 𝑧 = ((𝑣 + -1) ·ℎ
𝑦))) |
56 | 55 | rspcev 3282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑣 + -1) ∈ ℂ ∧
𝑧 = ((𝑣 + -1) ·ℎ
𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦)) |
57 | 36, 53, 56 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦)) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦)) |
58 | 57 | exp31 628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑣 ∈ ℂ → ((𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑦) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦)))) |
59 | 58 | rexlimdv 3012 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(∃𝑣 ∈ ℂ
(𝑦 +ℎ
𝑧) = (𝑣 ·ℎ 𝑦) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦))) |
60 | 33, 59 | sylbid 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑦}) → ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦))) |
61 | 31, 60 | syld 46 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
∃𝑤 ∈ ℂ
𝑧 = (𝑤 ·ℎ 𝑦))) |
62 | | elspansn 27809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℋ → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦))) |
63 | 62 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ (span‘{𝑦}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 ·ℎ 𝑦))) |
64 | 61, 63 | sylibrd 248 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
𝑧 ∈ (span‘{𝑦}))) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
→ ((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
𝑧 ∈ (span‘{𝑦}))) |
66 | | spansneleq 27813 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0ℎ)
→ (𝑧 ∈
(span‘{𝑦}) →
(span‘{𝑧}) =
(span‘{𝑦}))) |
67 | | eqcom 2617 |
. . . . . . . . . . . . . . . . . 18
⊢
((span‘{𝑧}) =
(span‘{𝑦}) ↔
(span‘{𝑦}) =
(span‘{𝑧})) |
68 | 66, 67 | syl6ib 240 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ≠ 0ℎ)
→ (𝑧 ∈
(span‘{𝑦}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
69 | 68 | adantlr 747 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
→ (𝑧 ∈
(span‘{𝑦}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
70 | 65, 69 | syld 46 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
→ ((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑦}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
71 | 29, 70 | sylan9r 688 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
∧ 𝐴 =
(span‘{𝑦})) →
((span‘{(𝑦
+ℎ 𝑧)}) =
𝐴 → (span‘{𝑦}) = (span‘{𝑧}))) |
72 | 71 | necon3d 2803 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑧 ≠ 0ℎ)
∧ 𝐴 =
(span‘{𝑦})) →
((span‘{𝑦}) ≠
(span‘{𝑧}) →
(span‘{(𝑦
+ℎ 𝑧)})
≠ 𝐴)) |
73 | 72 | adantlrl 752 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ 𝐴 = (span‘{𝑦})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴)) |
74 | 73 | adantrr 749 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴)) |
75 | 74 | imp 444 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴) |
76 | | eqeq2 2621 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 +ℎ 𝑧)}) = 𝐵 ↔ (span‘{(𝑦 +ℎ 𝑧)}) = (span‘{𝑧}))) |
77 | 76 | biimpd 218 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = (span‘{𝑧}) → ((span‘{(𝑦 +ℎ 𝑧)}) = 𝐵 → (span‘{(𝑦 +ℎ 𝑧)}) = (span‘{𝑧}))) |
78 | | spansneleqi 27812 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 +ℎ 𝑧) ∈ ℋ →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
(𝑦 +ℎ
𝑧) ∈
(span‘{𝑧}))) |
79 | 9, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
(𝑦 +ℎ
𝑧) ∈
(span‘{𝑧}))) |
80 | | elspansn 27809 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ℋ → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧))) |
81 | 80 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑧}) ↔ ∃𝑣 ∈ ℂ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧))) |
82 | 35 | ad2antlr 759 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → (𝑣 + -1) ∈ ℂ) |
83 | | hvmulcl 27254 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → (𝑣
·ℎ 𝑧) ∈ ℋ) |
84 | 83 | ancoms 468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → (𝑣
·ℎ 𝑧) ∈ ℋ) |
85 | 84 | adantll 746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑣
·ℎ 𝑧) ∈ ℋ) |
86 | | hvsubadd 27318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑣
·ℎ 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑣 ·ℎ 𝑧) −ℎ
𝑧) = 𝑦 ↔ (𝑧 +ℎ 𝑦) = (𝑣 ·ℎ 𝑧))) |
87 | 85, 41, 40, 86 | syl3anc 1318 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣
·ℎ 𝑧) −ℎ 𝑧) = 𝑦 ↔ (𝑧 +ℎ 𝑦) = (𝑣 ·ℎ 𝑧))) |
88 | | ax-hvcom 27242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) |
89 | 88 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) |
90 | 89 | eqeq1d 2612 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧) ↔ (𝑧 +ℎ 𝑦) = (𝑣 ·ℎ 𝑧))) |
91 | 87, 90 | bitr4d 270 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → (((𝑣
·ℎ 𝑧) −ℎ 𝑧) = 𝑦 ↔ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧))) |
92 | 91 | biimpar 501 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → ((𝑣 ·ℎ 𝑧) −ℎ
𝑧) = 𝑦) |
93 | | hvsubval 27257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑣
·ℎ 𝑧) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑣 ·ℎ 𝑧) −ℎ
𝑧) = ((𝑣 ·ℎ 𝑧) +ℎ (-1
·ℎ 𝑧))) |
94 | 83, 93 | sylancom 698 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣
·ℎ 𝑧) −ℎ 𝑧) = ((𝑣 ·ℎ 𝑧) +ℎ (-1
·ℎ 𝑧))) |
95 | | ax-hvdistr2 27250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑣 ∈ ℂ ∧ -1 ∈
ℂ ∧ 𝑧 ∈
ℋ) → ((𝑣 + -1)
·ℎ 𝑧) = ((𝑣 ·ℎ 𝑧) +ℎ (-1
·ℎ 𝑧))) |
96 | 14, 95 | mp3an2 1404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣 + -1)
·ℎ 𝑧) = ((𝑣 ·ℎ 𝑧) +ℎ (-1
·ℎ 𝑧))) |
97 | 94, 96 | eqtr4d 2647 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝑣
·ℎ 𝑧) −ℎ 𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
98 | 97 | ancoms 468 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ) → ((𝑣
·ℎ 𝑧) −ℎ 𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
99 | 98 | adantll 746 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) → ((𝑣
·ℎ 𝑧) −ℎ 𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
100 | 99 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → ((𝑣 ·ℎ 𝑧) −ℎ
𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
101 | 92, 100 | eqtr3d 2646 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → 𝑦 = ((𝑣 + -1) ·ℎ
𝑧)) |
102 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝑣 + -1) → (𝑤 ·ℎ 𝑧) = ((𝑣 + -1) ·ℎ
𝑧)) |
103 | 102 | eqeq2d 2620 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑣 + -1) → (𝑦 = (𝑤 ·ℎ 𝑧) ↔ 𝑦 = ((𝑣 + -1) ·ℎ
𝑧))) |
104 | 103 | rspcev 3282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑣 + -1) ∈ ℂ ∧
𝑦 = ((𝑣 + -1) ·ℎ
𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧)) |
105 | 82, 101, 104 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑣 ∈ ℂ) ∧ (𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧)) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧)) |
106 | 105 | exp31 628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑣 ∈ ℂ → ((𝑦 +ℎ 𝑧) = (𝑣 ·ℎ 𝑧) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧)))) |
107 | 106 | rexlimdv 3012 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(∃𝑣 ∈ ℂ
(𝑦 +ℎ
𝑧) = (𝑣 ·ℎ 𝑧) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧))) |
108 | 81, 107 | sylbid 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 +ℎ 𝑧) ∈ (span‘{𝑧}) → ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧))) |
109 | 79, 108 | syld 46 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
∃𝑤 ∈ ℂ
𝑦 = (𝑤 ·ℎ 𝑧))) |
110 | | elspansn 27809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℋ → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧))) |
111 | 110 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ∈ (span‘{𝑧}) ↔ ∃𝑤 ∈ ℂ 𝑦 = (𝑤 ·ℎ 𝑧))) |
112 | 109, 111 | sylibrd 248 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
𝑦 ∈ (span‘{𝑧}))) |
113 | 112 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
→ ((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
𝑦 ∈ (span‘{𝑧}))) |
114 | | spansneleq 27813 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ≠ 0ℎ)
→ (𝑦 ∈
(span‘{𝑧}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
115 | 114 | adantll 746 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
→ (𝑦 ∈
(span‘{𝑧}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
116 | 113, 115 | syld 46 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
→ ((span‘{(𝑦
+ℎ 𝑧)}) =
(span‘{𝑧}) →
(span‘{𝑦}) =
(span‘{𝑧}))) |
117 | 77, 116 | sylan9r 688 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
∧ 𝐵 =
(span‘{𝑧})) →
((span‘{(𝑦
+ℎ 𝑧)}) =
𝐵 → (span‘{𝑦}) = (span‘{𝑧}))) |
118 | 117 | necon3d 2803 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑦 ≠ 0ℎ)
∧ 𝐵 =
(span‘{𝑧})) →
((span‘{𝑦}) ≠
(span‘{𝑧}) →
(span‘{(𝑦
+ℎ 𝑧)})
≠ 𝐵)) |
119 | 118 | adantlrr 753 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ 𝐵 = (span‘{𝑧})) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵)) |
120 | 119 | adantrl 748 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵)) |
121 | 120 | imp 444 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵) |
122 | | spanpr 27823 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(span‘{(𝑦
+ℎ 𝑧)})
⊆ (span‘{𝑦,
𝑧})) |
123 | 122 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (span‘{𝑦, 𝑧})) |
124 | | oveq12 6558 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧})) → (𝐴 ∨ℋ 𝐵) = ((span‘{𝑦}) ∨ℋ (span‘{𝑧}))) |
125 | | df-pr 4128 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑦, 𝑧} = ({𝑦} ∪ {𝑧}) |
126 | 125 | fveq2i 6106 |
. . . . . . . . . . . . . . . 16
⊢
(span‘{𝑦,
𝑧}) = (span‘({𝑦} ∪ {𝑧})) |
127 | | snssi 4280 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℋ → {𝑦} ⊆
ℋ) |
128 | | snssi 4280 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℋ → {𝑧} ⊆
ℋ) |
129 | | spanun 27788 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑦} ⊆ ℋ ∧ {𝑧} ⊆ ℋ) →
(span‘({𝑦} ∪
{𝑧})) = ((span‘{𝑦}) +ℋ
(span‘{𝑧}))) |
130 | 127, 128,
129 | syl2an 493 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(span‘({𝑦} ∪
{𝑧})) = ((span‘{𝑦}) +ℋ
(span‘{𝑧}))) |
131 | 126, 130 | syl5eq 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(span‘{𝑦, 𝑧}) = ((span‘{𝑦}) +ℋ
(span‘{𝑧}))) |
132 | | spansnch 27803 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℋ →
(span‘{𝑦}) ∈
Cℋ ) |
133 | | spansnj 27890 |
. . . . . . . . . . . . . . . 16
⊢
(((span‘{𝑦})
∈ Cℋ ∧ 𝑧 ∈ ℋ) → ((span‘{𝑦}) +ℋ
(span‘{𝑧})) =
((span‘{𝑦})
∨ℋ (span‘{𝑧}))) |
134 | 132, 133 | sylan 487 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{𝑦})
+ℋ (span‘{𝑧})) = ((span‘{𝑦}) ∨ℋ (span‘{𝑧}))) |
135 | 131, 134 | eqtr2d 2645 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
((span‘{𝑦})
∨ℋ (span‘{𝑧})) = (span‘{𝑦, 𝑧})) |
136 | 124, 135 | sylan9eqr 2666 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ∨ℋ 𝐵) = (span‘{𝑦, 𝑧})) |
137 | 123, 136 | sseqtr4d 3605 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵)) |
138 | 137 | adantlr 747 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵)) |
139 | 138 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵)) |
140 | | neeq1 2844 |
. . . . . . . . . . . 12
⊢ (𝑥 = (span‘{(𝑦 +ℎ 𝑧)}) → (𝑥 ≠ 𝐴 ↔ (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴)) |
141 | | neeq1 2844 |
. . . . . . . . . . . 12
⊢ (𝑥 = (span‘{(𝑦 +ℎ 𝑧)}) → (𝑥 ≠ 𝐵 ↔ (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵)) |
142 | | sseq1 3589 |
. . . . . . . . . . . 12
⊢ (𝑥 = (span‘{(𝑦 +ℎ 𝑧)}) → (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵))) |
143 | 140, 141,
142 | 3anbi123d 1391 |
. . . . . . . . . . 11
⊢ (𝑥 = (span‘{(𝑦 +ℎ 𝑧)}) → ((𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ↔ ((span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵)))) |
144 | 143 | rspcev 3282 |
. . . . . . . . . 10
⊢
(((span‘{(𝑦
+ℎ 𝑧)})
∈ HAtoms ∧ ((span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐴 ∧ (span‘{(𝑦 +ℎ 𝑧)}) ≠ 𝐵 ∧ (span‘{(𝑦 +ℎ 𝑧)}) ⊆ (𝐴 ∨ℋ 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) |
145 | 27, 75, 121, 139, 144 | syl13anc 1320 |
. . . . . . . . 9
⊢
(((((𝑦 ∈
ℋ ∧ 𝑧 ∈
ℋ) ∧ (𝑦 ≠
0ℎ ∧ 𝑧 ≠ 0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) ∧ (span‘{𝑦}) ≠ (span‘{𝑧})) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) |
146 | 145 | ex 449 |
. . . . . . . 8
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → ((span‘{𝑦}) ≠ (span‘{𝑧}) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
147 | 8, 146 | sylbid 229 |
. . . . . . 7
⊢ ((((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ (𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ)) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
148 | 147 | expl 646 |
. . . . . 6
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0ℎ ∧
𝑧 ≠
0ℎ) ∧ (𝐴 = (span‘{𝑦}) ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))))) |
149 | 4, 148 | syl5bi 231 |
. . . . 5
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑦 ≠ 0ℎ ∧
𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))))) |
150 | 149 | rexlimivv 3018 |
. . . 4
⊢
(∃𝑦 ∈
ℋ ∃𝑧 ∈
ℋ ((𝑦 ≠
0ℎ ∧ 𝐴 = (span‘{𝑦})) ∧ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
151 | 3, 150 | sylbir 224 |
. . 3
⊢
((∃𝑦 ∈
ℋ (𝑦 ≠
0ℎ ∧ 𝐴 = (span‘{𝑦})) ∧ ∃𝑧 ∈ ℋ (𝑧 ≠ 0ℎ ∧ 𝐵 = (span‘{𝑧}))) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
152 | 1, 2, 151 | syl2anb 495 |
. 2
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)))) |
153 | 152 | 3impia 1253 |
1
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴 ≠ 𝐵) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) |