HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atom1d Structured version   Unicode version

Theorem atom1d 27671
Description: The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of [BeltramettiCassinelli] p. 107. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atom1d  |-  ( A  e. HAtoms 
<->  E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( span `  { x } ) ) )
Distinct variable group:    x, A

Proof of Theorem atom1d
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elat2 27658 . . . 4  |-  ( A  e. HAtoms 
<->  ( A  e.  CH  /\  ( A  =/=  0H  /\ 
A. y  e.  CH  ( y  C_  A  ->  ( y  =  A  \/  y  =  0H ) ) ) ) )
2 chne0 26812 . . . . . 6  |-  ( A  e.  CH  ->  ( A  =/=  0H  <->  E. x  e.  A  x  =/=  0h ) )
3 nfv 1728 . . . . . . 7  |-  F/ x  A  e.  CH
4 nfv 1728 . . . . . . . 8  |-  F/ x A. y  e.  CH  (
y  C_  A  ->  ( y  =  A  \/  y  =  0H )
)
5 nfre1 2864 . . . . . . . 8  |-  F/ x E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) )
64, 5nfim 1948 . . . . . . 7  |-  F/ x
( A. y  e. 
CH  ( y  C_  A  ->  ( y  =  A  \/  y  =  0H ) )  ->  E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) ) )
7 chel 26548 . . . . . . . . . . 11  |-  ( ( A  e.  CH  /\  x  e.  A )  ->  x  e.  ~H )
87adantrr 715 . . . . . . . . . 10  |-  ( ( A  e.  CH  /\  ( x  e.  A  /\  x  =/=  0h )
)  ->  x  e.  ~H )
98adantrr 715 . . . . . . . . 9  |-  ( ( A  e.  CH  /\  ( ( x  e.  A  /\  x  =/= 
0h )  /\  A. y  e.  CH  ( y 
C_  A  ->  (
y  =  A  \/  y  =  0H )
) ) )  ->  x  e.  ~H )
10 simprlr 765 . . . . . . . . 9  |-  ( ( A  e.  CH  /\  ( ( x  e.  A  /\  x  =/= 
0h )  /\  A. y  e.  CH  ( y 
C_  A  ->  (
y  =  A  \/  y  =  0H )
) ) )  ->  x  =/=  0h )
11 h1dn0 26870 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ~H  /\  x  =/=  0h )  -> 
( _|_ `  ( _|_ `  { x }
) )  =/=  0H )
127, 11sylan 469 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CH  /\  x  e.  A )  /\  x  =/=  0h )  ->  ( _|_ `  ( _|_ `  { x }
) )  =/=  0H )
1312anasss 645 . . . . . . . . . . . 12  |-  ( ( A  e.  CH  /\  ( x  e.  A  /\  x  =/=  0h )
)  ->  ( _|_ `  ( _|_ `  {
x } ) )  =/=  0H )
1413adantrr 715 . . . . . . . . . . 11  |-  ( ( A  e.  CH  /\  ( ( x  e.  A  /\  x  =/= 
0h )  /\  A. y  e.  CH  ( y 
C_  A  ->  (
y  =  A  \/  y  =  0H )
) ) )  -> 
( _|_ `  ( _|_ `  { x }
) )  =/=  0H )
15 ch1dle 27670 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CH  /\  x  e.  A )  ->  ( _|_ `  ( _|_ `  { x }
) )  C_  A
)
16 snssi 4115 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~H  ->  { x }  C_  ~H )
17 occl 26622 . . . . . . . . . . . . . . . . . 18  |-  ( { x }  C_  ~H  ->  ( _|_ `  {
x } )  e. 
CH )
187, 16, 173syl 20 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CH  /\  x  e.  A )  ->  ( _|_ `  {
x } )  e. 
CH )
19 choccl 26624 . . . . . . . . . . . . . . . . 17  |-  ( ( _|_ `  { x } )  e.  CH  ->  ( _|_ `  ( _|_ `  { x }
) )  e.  CH )
20 sseq1 3462 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( _|_ `  ( _|_ `  { x }
) )  ->  (
y  C_  A  <->  ( _|_ `  ( _|_ `  {
x } ) ) 
C_  A ) )
21 eqeq1 2406 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( _|_ `  ( _|_ `  { x }
) )  ->  (
y  =  A  <->  ( _|_ `  ( _|_ `  {
x } ) )  =  A ) )
22 eqeq1 2406 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( _|_ `  ( _|_ `  { x }
) )  ->  (
y  =  0H  <->  ( _|_ `  ( _|_ `  {
x } ) )  =  0H ) )
2321, 22orbi12d 708 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( _|_ `  ( _|_ `  { x }
) )  ->  (
( y  =  A  \/  y  =  0H )  <->  ( ( _|_ `  ( _|_ `  {
x } ) )  =  A  \/  ( _|_ `  ( _|_ `  {
x } ) )  =  0H ) ) )
2420, 23imbi12d 318 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( _|_ `  ( _|_ `  { x }
) )  ->  (
( y  C_  A  ->  ( y  =  A  \/  y  =  0H ) )  <->  ( ( _|_ `  ( _|_ `  {
x } ) ) 
C_  A  ->  (
( _|_ `  ( _|_ `  { x }
) )  =  A  \/  ( _|_ `  ( _|_ `  { x }
) )  =  0H ) ) ) )
2524rspcv 3155 . . . . . . . . . . . . . . . . 17  |-  ( ( _|_ `  ( _|_ `  { x } ) )  e.  CH  ->  ( A. y  e.  CH  ( y  C_  A  ->  ( y  =  A  \/  y  =  0H ) )  ->  (
( _|_ `  ( _|_ `  { x }
) )  C_  A  ->  ( ( _|_ `  ( _|_ `  { x }
) )  =  A  \/  ( _|_ `  ( _|_ `  { x }
) )  =  0H ) ) ) )
2618, 19, 253syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CH  /\  x  e.  A )  ->  ( A. y  e. 
CH  ( y  C_  A  ->  ( y  =  A  \/  y  =  0H ) )  -> 
( ( _|_ `  ( _|_ `  { x }
) )  C_  A  ->  ( ( _|_ `  ( _|_ `  { x }
) )  =  A  \/  ( _|_ `  ( _|_ `  { x }
) )  =  0H ) ) ) )
2715, 26mpid 39 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CH  /\  x  e.  A )  ->  ( A. y  e. 
CH  ( y  C_  A  ->  ( y  =  A  \/  y  =  0H ) )  -> 
( ( _|_ `  ( _|_ `  { x }
) )  =  A  \/  ( _|_ `  ( _|_ `  { x }
) )  =  0H ) ) )
2827impr 617 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CH  /\  ( x  e.  A  /\  A. y  e.  CH  ( y  C_  A  ->  ( y  =  A  \/  y  =  0H ) ) ) )  ->  ( ( _|_ `  ( _|_ `  {
x } ) )  =  A  \/  ( _|_ `  ( _|_ `  {
x } ) )  =  0H ) )
2928adantrlr 721 . . . . . . . . . . . . 13  |-  ( ( A  e.  CH  /\  ( ( x  e.  A  /\  x  =/= 
0h )  /\  A. y  e.  CH  ( y 
C_  A  ->  (
y  =  A  \/  y  =  0H )
) ) )  -> 
( ( _|_ `  ( _|_ `  { x }
) )  =  A  \/  ( _|_ `  ( _|_ `  { x }
) )  =  0H ) )
3029ord 375 . . . . . . . . . . . 12  |-  ( ( A  e.  CH  /\  ( ( x  e.  A  /\  x  =/= 
0h )  /\  A. y  e.  CH  ( y 
C_  A  ->  (
y  =  A  \/  y  =  0H )
) ) )  -> 
( -.  ( _|_ `  ( _|_ `  {
x } ) )  =  A  ->  ( _|_ `  ( _|_ `  {
x } ) )  =  0H ) )
31 nne 2604 . . . . . . . . . . . 12  |-  ( -.  ( _|_ `  ( _|_ `  { x }
) )  =/=  0H  <->  ( _|_ `  ( _|_ `  { x } ) )  =  0H )
3230, 31syl6ibr 227 . . . . . . . . . . 11  |-  ( ( A  e.  CH  /\  ( ( x  e.  A  /\  x  =/= 
0h )  /\  A. y  e.  CH  ( y 
C_  A  ->  (
y  =  A  \/  y  =  0H )
) ) )  -> 
( -.  ( _|_ `  ( _|_ `  {
x } ) )  =  A  ->  -.  ( _|_ `  ( _|_ `  { x } ) )  =/=  0H ) )
3314, 32mt4d 138 . . . . . . . . . 10  |-  ( ( A  e.  CH  /\  ( ( x  e.  A  /\  x  =/= 
0h )  /\  A. y  e.  CH  ( y 
C_  A  ->  (
y  =  A  \/  y  =  0H )
) ) )  -> 
( _|_ `  ( _|_ `  { x }
) )  =  A )
3433eqcomd 2410 . . . . . . . . 9  |-  ( ( A  e.  CH  /\  ( ( x  e.  A  /\  x  =/= 
0h )  /\  A. y  e.  CH  ( y 
C_  A  ->  (
y  =  A  \/  y  =  0H )
) ) )  ->  A  =  ( _|_ `  ( _|_ `  {
x } ) ) )
35 rspe 2861 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  ( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) ) )  ->  E. x  e.  ~H  ( x  =/= 
0h  /\  A  =  ( _|_ `  ( _|_ `  { x } ) ) ) )
369, 10, 34, 35syl12anc 1228 . . . . . . . 8  |-  ( ( A  e.  CH  /\  ( ( x  e.  A  /\  x  =/= 
0h )  /\  A. y  e.  CH  ( y 
C_  A  ->  (
y  =  A  \/  y  =  0H )
) ) )  ->  E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) ) )
3736exp44 611 . . . . . . 7  |-  ( A  e.  CH  ->  (
x  e.  A  -> 
( x  =/=  0h  ->  ( A. y  e. 
CH  ( y  C_  A  ->  ( y  =  A  \/  y  =  0H ) )  ->  E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) ) ) ) ) )
383, 6, 37rexlimd 2887 . . . . . 6  |-  ( A  e.  CH  ->  ( E. x  e.  A  x  =/=  0h  ->  ( A. y  e.  CH  (
y  C_  A  ->  ( y  =  A  \/  y  =  0H )
)  ->  E. x  e.  ~H  ( x  =/= 
0h  /\  A  =  ( _|_ `  ( _|_ `  { x } ) ) ) ) ) )
392, 38sylbid 215 . . . . 5  |-  ( A  e.  CH  ->  ( A  =/=  0H  ->  ( A. y  e.  CH  (
y  C_  A  ->  ( y  =  A  \/  y  =  0H )
)  ->  E. x  e.  ~H  ( x  =/= 
0h  /\  A  =  ( _|_ `  ( _|_ `  { x } ) ) ) ) ) )
4039imp32 431 . . . 4  |-  ( ( A  e.  CH  /\  ( A  =/=  0H  /\ 
A. y  e.  CH  ( y  C_  A  ->  ( y  =  A  \/  y  =  0H ) ) ) )  ->  E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) ) )
411, 40sylbi 195 . . 3  |-  ( A  e. HAtoms  ->  E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) ) )
42 h1da 27667 . . . . . . 7  |-  ( ( x  e.  ~H  /\  x  =/=  0h )  -> 
( _|_ `  ( _|_ `  { x }
) )  e. HAtoms )
43 eleq1 2474 . . . . . . 7  |-  ( A  =  ( _|_ `  ( _|_ `  { x }
) )  ->  ( A  e. HAtoms  <->  ( _|_ `  ( _|_ `  { x }
) )  e. HAtoms )
)
4442, 43syl5ibr 221 . . . . . 6  |-  ( A  =  ( _|_ `  ( _|_ `  { x }
) )  ->  (
( x  e.  ~H  /\  x  =/=  0h )  ->  A  e. HAtoms ) )
4544expdcom 437 . . . . 5  |-  ( x  e.  ~H  ->  (
x  =/=  0h  ->  ( A  =  ( _|_ `  ( _|_ `  {
x } ) )  ->  A  e. HAtoms )
) )
4645impd 429 . . . 4  |-  ( x  e.  ~H  ->  (
( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) )  ->  A  e. HAtoms ) )
4746rexlimiv 2889 . . 3  |-  ( E. x  e.  ~H  (
x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) )  ->  A  e. HAtoms )
4841, 47impbii 188 . 2  |-  ( A  e. HAtoms 
<->  E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) ) )
49 spansn 26877 . . . . 5  |-  ( x  e.  ~H  ->  ( span `  { x }
)  =  ( _|_ `  ( _|_ `  {
x } ) ) )
5049eqeq2d 2416 . . . 4  |-  ( x  e.  ~H  ->  ( A  =  ( span `  { x } )  <-> 
A  =  ( _|_ `  ( _|_ `  {
x } ) ) ) )
5150anbi2d 702 . . 3  |-  ( x  e.  ~H  ->  (
( x  =/=  0h  /\  A  =  ( span `  { x } ) )  <->  ( x  =/= 
0h  /\  A  =  ( _|_ `  ( _|_ `  { x } ) ) ) ) )
5251rexbiia 2904 . 2  |-  ( E. x  e.  ~H  (
x  =/=  0h  /\  A  =  ( span `  { x } ) )  <->  E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( _|_ `  ( _|_ `  {
x } ) ) ) )
5348, 52bitr4i 252 1  |-  ( A  e. HAtoms 
<->  E. x  e.  ~H  ( x  =/=  0h  /\  A  =  ( span `  { x } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2753   E.wrex 2754    C_ wss 3413   {csn 3971   ` cfv 5568   ~Hchil 26236   0hc0v 26241   CHcch 26246   _|_cort 26247   spancspn 26249   0Hc0h 26252  HAtomscat 26282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cc 8846  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599  ax-addf 9600  ax-mulf 9601  ax-hilex 26316  ax-hfvadd 26317  ax-hvcom 26318  ax-hvass 26319  ax-hv0cl 26320  ax-hvaddid 26321  ax-hfvmul 26322  ax-hvmulid 26323  ax-hvmulass 26324  ax-hvdistr1 26325  ax-hvdistr2 26326  ax-hvmul0 26327  ax-hfi 26396  ax-his1 26399  ax-his2 26400  ax-his3 26401  ax-his4 26402  ax-hcompl 26519
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-omul 7171  df-er 7347  df-map 7458  df-pm 7459  df-ixp 7507  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-fi 7904  df-sup 7934  df-oi 7968  df-card 8351  df-acn 8354  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-9 10641  df-10 10642  df-n0 10836  df-z 10905  df-dec 11019  df-uz 11127  df-q 11227  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-ioo 11585  df-ico 11587  df-icc 11588  df-fz 11725  df-fzo 11853  df-fl 11964  df-seq 12150  df-exp 12209  df-hash 12451  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-clim 13458  df-rlim 13459  df-sum 13656  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-starv 14922  df-sca 14923  df-vsca 14924  df-ip 14925  df-tset 14926  df-ple 14927  df-ds 14929  df-unif 14930  df-hom 14931  df-cco 14932  df-rest 15035  df-topn 15036  df-0g 15054  df-gsum 15055  df-topgen 15056  df-pt 15057  df-prds 15060  df-xrs 15114  df-qtop 15119  df-imas 15120  df-xps 15122  df-mre 15198  df-mrc 15199  df-acs 15201  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-submnd 16289  df-mulg 16382  df-cntz 16677  df-cmn 17122  df-psmet 18729  df-xmet 18730  df-met 18731  df-bl 18732  df-mopn 18733  df-fbas 18734  df-fg 18735  df-cnfld 18739  df-top 19689  df-bases 19691  df-topon 19692  df-topsp 19693  df-cld 19810  df-ntr 19811  df-cls 19812  df-nei 19890  df-cn 20019  df-cnp 20020  df-lm 20021  df-haus 20107  df-tx 20353  df-hmeo 20546  df-fil 20637  df-fm 20729  df-flim 20730  df-flf 20731  df-xms 21113  df-ms 21114  df-tms 21115  df-cfil 21984  df-cau 21985  df-cmet 21986  df-grpo 25593  df-gid 25594  df-ginv 25595  df-gdiv 25596  df-ablo 25684  df-subgo 25704  df-vc 25839  df-nv 25885  df-va 25888  df-ba 25889  df-sm 25890  df-0v 25891  df-vs 25892  df-nmcv 25893  df-ims 25894  df-dip 26011  df-ssp 26035  df-ph 26128  df-cbn 26179  df-hnorm 26285  df-hba 26286  df-hvsub 26288  df-hlim 26289  df-hcau 26290  df-sh 26524  df-ch 26539  df-oc 26570  df-ch0 26571  df-span 26627  df-cv 27597  df-at 27656
This theorem is referenced by:  superpos  27672  chcv1  27673  chjatom  27675
  Copyright terms: Public domain W3C validator