MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3 Structured version   Visualization version   GIF version

Theorem asinlem3 24398
Description: The argument to the logarithm in df-asin 24392 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))

Proof of Theorem asinlem3
StepHypRef Expression
1 0red 9920 . 2 (𝐴 ∈ ℂ → 0 ∈ ℝ)
2 imcl 13699 . 2 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
3 ax-icn 9874 . . . . . . . . 9 i ∈ ℂ
4 negcl 10160 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
54adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -𝐴 ∈ ℂ)
6 mulcl 9899 . . . . . . . . 9 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
73, 5, 6sylancr 694 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · -𝐴) ∈ ℂ)
8 ax-1cn 9873 . . . . . . . . . 10 1 ∈ ℂ
95sqcld 12868 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (-𝐴↑2) ∈ ℂ)
10 subcl 10159 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 − (-𝐴↑2)) ∈ ℂ)
118, 9, 10sylancr 694 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (-𝐴↑2)) ∈ ℂ)
1211sqrtcld 14024 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (-𝐴↑2))) ∈ ℂ)
137, 12addcld 9938 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ)
14 asinlem 24395 . . . . . . . 8 (-𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
155, 14syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
1613, 15absrpcld 14035 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+)
17 2z 11286 . . . . . 6 2 ∈ ℤ
18 rpexpcl 12741 . . . . . 6 (((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
1916, 17, 18sylancl 693 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
2019rprecred 11759 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ)
2113cjcld 13784 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℂ)
2221recld 13782 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) ∈ ℝ)
2319rpreccld 11758 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ+)
2423rpge0d 11752 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
25 imneg 13721 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
2625adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) = -(ℑ‘𝐴))
272le0neg2d 10479 . . . . . . . 8 (𝐴 ∈ ℂ → (0 ≤ (ℑ‘𝐴) ↔ -(ℑ‘𝐴) ≤ 0))
2827biimpa 500 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -(ℑ‘𝐴) ≤ 0)
2926, 28eqbrtrd 4605 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) ≤ 0)
30 asinlem3a 24397 . . . . . 6 ((-𝐴 ∈ ℂ ∧ (ℑ‘-𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
315, 29, 30syl2anc 691 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3213recjd 13792 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3331, 32breqtrrd 4611 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
3420, 22, 24, 33mulge0d 10483 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
35 recval 13910 . . . . . . 7 ((((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
3613, 15, 35syl2anc 691 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
37 asinlem2 24396 . . . . . . . . 9 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3837adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3938eqcomd 2616 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
40 1cnd 9935 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 ∈ ℂ)
41 simpl 472 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
42 mulcl 9899 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
433, 41, 42sylancr 694 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · 𝐴) ∈ ℂ)
44 sqcl 12787 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
4544adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (𝐴↑2) ∈ ℂ)
46 subcl 10159 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
478, 45, 46sylancr 694 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (𝐴↑2)) ∈ ℂ)
4847sqrtcld 14024 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (𝐴↑2))) ∈ ℂ)
4943, 48addcld 9938 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
5040, 49, 13, 15divmul3d 10714 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ↔ 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5139, 50mpbird 246 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
5219rpcnd 11750 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℂ)
5319rpne0d 11753 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ≠ 0)
5421, 52, 53divrec2d 10684 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5536, 51, 543eqtr3d 2652 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5655fveq2d 6107 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5720, 21remul2d 13815 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5856, 57eqtrd 2644 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5934, 58breqtrrd 4611 . 2 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
60 asinlem3a 24397 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
611, 2, 59, 60lecasei 10022 1 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  cz 11254  +crp 11708  cexp 12722  ccj 13684  cre 13685  cim 13686  csqrt 13821  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  asinneg  24413  asinbnd  24426  dvasin  32666
  Copyright terms: Public domain W3C validator