Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtrivd Structured version   Visualization version   GIF version

Theorem abvtrivd 18663
 Description: The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
abvtriv.a 𝐴 = (AbsVal‘𝑅)
abvtriv.b 𝐵 = (Base‘𝑅)
abvtriv.z 0 = (0g𝑅)
abvtriv.f 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
abvtrivd.1 · = (.r𝑅)
abvtrivd.2 (𝜑𝑅 ∈ Ring)
abvtrivd.3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
Assertion
Ref Expression
abvtrivd (𝜑𝐹𝐴)
Distinct variable groups:   𝑥, 0   𝑦,𝑧,𝐹   𝑥,𝑦,𝑧,𝜑   𝑥,𝑅,𝑦,𝑧   𝑥, ·   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑦,𝑧)   · (𝑦,𝑧)   𝐹(𝑥)   0 (𝑦,𝑧)

Proof of Theorem abvtrivd
StepHypRef Expression
1 abvtriv.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 (𝜑𝐴 = (AbsVal‘𝑅))
3 abvtriv.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
5 eqidd 2611 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
6 abvtrivd.1 . . 3 · = (.r𝑅)
76a1i 11 . 2 (𝜑· = (.r𝑅))
8 abvtriv.z . . 3 0 = (0g𝑅)
98a1i 11 . 2 (𝜑0 = (0g𝑅))
10 abvtrivd.2 . 2 (𝜑𝑅 ∈ Ring)
11 0re 9919 . . . . 5 0 ∈ ℝ
12 1re 9918 . . . . 5 1 ∈ ℝ
1311, 12keepel 4105 . . . 4 if(𝑥 = 0 , 0, 1) ∈ ℝ
1413a1i 11 . . 3 ((𝜑𝑥𝐵) → if(𝑥 = 0 , 0, 1) ∈ ℝ)
15 abvtriv.f . . 3 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
1614, 15fmptd 6292 . 2 (𝜑𝐹:𝐵⟶ℝ)
173, 8ring0cl 18392 . . 3 (𝑅 ∈ Ring → 0𝐵)
18 iftrue 4042 . . . 4 (𝑥 = 0 → if(𝑥 = 0 , 0, 1) = 0)
19 c0ex 9913 . . . 4 0 ∈ V
2018, 15, 19fvmpt 6191 . . 3 ( 0𝐵 → (𝐹0 ) = 0)
2110, 17, 203syl 18 . 2 (𝜑 → (𝐹0 ) = 0)
22 0lt1 10429 . . 3 0 < 1
23 eqeq1 2614 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0𝑦 = 0 ))
2423ifbid 4058 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 0 , 0, 1) = if(𝑦 = 0 , 0, 1))
25 1ex 9914 . . . . . . 7 1 ∈ V
2619, 25ifex 4106 . . . . . 6 if(𝑦 = 0 , 0, 1) ∈ V
2724, 15, 26fvmpt 6191 . . . . 5 (𝑦𝐵 → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
28 ifnefalse 4048 . . . . 5 (𝑦0 → if(𝑦 = 0 , 0, 1) = 1)
2927, 28sylan9eq 2664 . . . 4 ((𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
30293adant1 1072 . . 3 ((𝜑𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
3122, 30syl5breqr 4621 . 2 ((𝜑𝑦𝐵𝑦0 ) → 0 < (𝐹𝑦))
32 1t1e1 11052 . . . 4 (1 · 1) = 1
3332eqcomi 2619 . . 3 1 = (1 · 1)
34103ad2ant1 1075 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Ring)
35 simp2l 1080 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦𝐵)
36 simp3l 1082 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧𝐵)
373, 6ringcl 18384 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦 · 𝑧) ∈ 𝐵)
3834, 35, 36, 37syl3anc 1318 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ∈ 𝐵)
39 eqeq1 2614 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0 ))
4039ifbid 4058 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦 · 𝑧) = 0 , 0, 1))
4119, 25ifex 4106 . . . . . 6 if((𝑦 · 𝑧) = 0 , 0, 1) ∈ V
4240, 15, 41fvmpt 6191 . . . . 5 ((𝑦 · 𝑧) ∈ 𝐵 → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
4338, 42syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
44 abvtrivd.3 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
4544neneqd 2787 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ (𝑦 · 𝑧) = 0 )
4645iffalsed 4047 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦 · 𝑧) = 0 , 0, 1) = 1)
4743, 46eqtrd 2644 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = 1)
4835, 27syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
49 simp2r 1081 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦0 )
5049neneqd 2787 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑦 = 0 )
5150iffalsed 4047 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑦 = 0 , 0, 1) = 1)
5248, 51eqtrd 2644 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = 1)
53 eqeq1 2614 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 0𝑧 = 0 ))
5453ifbid 4058 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 0 , 0, 1) = if(𝑧 = 0 , 0, 1))
5519, 25ifex 4106 . . . . . . 7 if(𝑧 = 0 , 0, 1) ∈ V
5654, 15, 55fvmpt 6191 . . . . . 6 (𝑧𝐵 → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
5736, 56syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
58 simp3r 1083 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧0 )
5958neneqd 2787 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑧 = 0 )
6059iffalsed 4047 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑧 = 0 , 0, 1) = 1)
6157, 60eqtrd 2644 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = 1)
6252, 61oveq12d 6567 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) · (𝐹𝑧)) = (1 · 1))
6333, 47, 623eqtr4a 2670 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
64 breq1 4586 . . . . . 6 (0 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (0 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
65 breq1 4586 . . . . . 6 (1 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (1 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
66 0le2 10988 . . . . . 6 0 ≤ 2
67 1le2 11118 . . . . . 6 1 ≤ 2
6864, 65, 66, 67keephyp 4102 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2
69 df-2 10956 . . . . 5 2 = (1 + 1)
7068, 69breqtri 4608 . . . 4 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1)
7170a1i 11 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1))
72 ringgrp 18375 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7310, 72syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
74733ad2ant1 1075 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Grp)
75 eqid 2610 . . . . . 6 (+g𝑅) = (+g𝑅)
763, 75grpcl 17253 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
7774, 35, 36, 76syl3anc 1318 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
78 eqeq1 2614 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 = 0 ↔ (𝑦(+g𝑅)𝑧) = 0 ))
7978ifbid 4058 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8019, 25ifex 4106 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ∈ V
8179, 15, 80fvmpt 6191 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8277, 81syl 17 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8352, 61oveq12d 6567 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) + (𝐹𝑧)) = (1 + 1))
8471, 82, 833brtr4d 4615 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
852, 4, 5, 7, 9, 10, 16, 21, 31, 63, 84isabvd 18643 1 (𝜑𝐹𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954  2c2 10947  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  Grpcgrp 17245  Ringcrg 18370  AbsValcabv 18639 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ico 12052  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ring 18372  df-abv 18640 This theorem is referenced by:  abvtriv  18664  abvn0b  19123
 Copyright terms: Public domain W3C validator