MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtrivd Structured version   Unicode version

Theorem abvtrivd 17058
Description: The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
abvtriv.a  |-  A  =  (AbsVal `  R )
abvtriv.b  |-  B  =  ( Base `  R
)
abvtriv.z  |-  .0.  =  ( 0g `  R )
abvtriv.f  |-  F  =  ( x  e.  B  |->  if ( x  =  .0.  ,  0 ,  1 ) )
abvtrivd.1  |-  .x.  =  ( .r `  R )
abvtrivd.2  |-  ( ph  ->  R  e.  Ring )
abvtrivd.3  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( y  .x.  z )  =/=  .0.  )
Assertion
Ref Expression
abvtrivd  |-  ( ph  ->  F  e.  A )
Distinct variable groups:    x,  .0.    y, z, F    x, y,
z, ph    x, R, y, z    x,  .x.    x, B
Allowed substitution hints:    A( x, y, z)    B( y, z)    .x. ( y,
z)    F( x)    .0. ( y,
z)

Proof of Theorem abvtrivd
StepHypRef Expression
1 abvtriv.a . . 3  |-  A  =  (AbsVal `  R )
21a1i 11 . 2  |-  ( ph  ->  A  =  (AbsVal `  R ) )
3 abvtriv.b . . 3  |-  B  =  ( Base `  R
)
43a1i 11 . 2  |-  ( ph  ->  B  =  ( Base `  R ) )
5 eqidd 2455 . 2  |-  ( ph  ->  ( +g  `  R
)  =  ( +g  `  R ) )
6 abvtrivd.1 . . 3  |-  .x.  =  ( .r `  R )
76a1i 11 . 2  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
8 abvtriv.z . . 3  |-  .0.  =  ( 0g `  R )
98a1i 11 . 2  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
10 abvtrivd.2 . 2  |-  ( ph  ->  R  e.  Ring )
11 0re 9501 . . . . 5  |-  0  e.  RR
12 1re 9500 . . . . 5  |-  1  e.  RR
1311, 12keepel 3968 . . . 4  |-  if ( x  =  .0.  , 
0 ,  1 )  e.  RR
1413a1i 11 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  if ( x  =  .0.  ,  0 ,  1 )  e.  RR )
15 abvtriv.f . . 3  |-  F  =  ( x  e.  B  |->  if ( x  =  .0.  ,  0 ,  1 ) )
1614, 15fmptd 5979 . 2  |-  ( ph  ->  F : B --> RR )
173, 8rng0cl 16799 . . 3  |-  ( R  e.  Ring  ->  .0.  e.  B )
18 iftrue 3908 . . . 4  |-  ( x  =  .0.  ->  if ( x  =  .0.  ,  0 ,  1 )  =  0 )
19 c0ex 9495 . . . 4  |-  0  e.  _V
2018, 15, 19fvmpt 5886 . . 3  |-  (  .0. 
e.  B  ->  ( F `  .0.  )  =  0 )
2110, 17, 203syl 20 . 2  |-  ( ph  ->  ( F `  .0.  )  =  0 )
22 0lt1 9977 . . 3  |-  0  <  1
23 eqeq1 2458 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  .0.  <->  y  =  .0.  ) )
2423ifbid 3922 . . . . . 6  |-  ( x  =  y  ->  if ( x  =  .0.  ,  0 ,  1 )  =  if ( y  =  .0.  ,  0 ,  1 ) )
25 1ex 9496 . . . . . . 7  |-  1  e.  _V
2619, 25ifex 3969 . . . . . 6  |-  if ( y  =  .0.  , 
0 ,  1 )  e.  _V
2724, 15, 26fvmpt 5886 . . . . 5  |-  ( y  e.  B  ->  ( F `  y )  =  if ( y  =  .0.  ,  0 ,  1 ) )
28 ifnefalse 3912 . . . . 5  |-  ( y  =/=  .0.  ->  if ( y  =  .0. 
,  0 ,  1 )  =  1 )
2927, 28sylan9eq 2515 . . . 4  |-  ( ( y  e.  B  /\  y  =/=  .0.  )  -> 
( F `  y
)  =  1 )
30293adant1 1006 . . 3  |-  ( (
ph  /\  y  e.  B  /\  y  =/=  .0.  )  ->  ( F `  y )  =  1 )
3122, 30syl5breqr 4439 . 2  |-  ( (
ph  /\  y  e.  B  /\  y  =/=  .0.  )  ->  0  <  ( F `  y )
)
32 1t1e1 10584 . . . 4  |-  ( 1  x.  1 )  =  1
3332eqcomi 2467 . . 3  |-  1  =  ( 1  x.  1 )
34103ad2ant1 1009 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  R  e.  Ring )
35 simp2l 1014 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  y  e.  B
)
36 simp3l 1016 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  z  e.  B
)
373, 6rngcl 16791 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y  .x.  z )  e.  B )
3834, 35, 36, 37syl3anc 1219 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( y  .x.  z )  e.  B
)
39 eqeq1 2458 . . . . . . 7  |-  ( x  =  ( y  .x.  z )  ->  (
x  =  .0.  <->  ( y  .x.  z )  =  .0.  ) )
4039ifbid 3922 . . . . . 6  |-  ( x  =  ( y  .x.  z )  ->  if ( x  =  .0.  ,  0 ,  1 )  =  if ( ( y  .x.  z )  =  .0.  ,  0 ,  1 ) )
4119, 25ifex 3969 . . . . . 6  |-  if ( ( y  .x.  z
)  =  .0.  , 
0 ,  1 )  e.  _V
4240, 15, 41fvmpt 5886 . . . . 5  |-  ( ( y  .x.  z )  e.  B  ->  ( F `  ( y  .x.  z ) )  =  if ( ( y 
.x.  z )  =  .0.  ,  0 ,  1 ) )
4338, 42syl 16 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( F `  ( y  .x.  z
) )  =  if ( ( y  .x.  z )  =  .0. 
,  0 ,  1 ) )
44 abvtrivd.3 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( y  .x.  z )  =/=  .0.  )
4544neneqd 2655 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  -.  ( y  .x.  z )  =  .0.  )
46 iffalse 3910 . . . . 5  |-  ( -.  ( y  .x.  z
)  =  .0.  ->  if ( ( y  .x.  z )  =  .0. 
,  0 ,  1 )  =  1 )
4745, 46syl 16 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  if ( ( y  .x.  z )  =  .0.  ,  0 ,  1 )  =  1 )
4843, 47eqtrd 2495 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( F `  ( y  .x.  z
) )  =  1 )
4935, 27syl 16 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( F `  y )  =  if ( y  =  .0. 
,  0 ,  1 ) )
50 simp2r 1015 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  y  =/=  .0.  )
5150neneqd 2655 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  -.  y  =  .0.  )
52 iffalse 3910 . . . . . 6  |-  ( -.  y  =  .0.  ->  if ( y  =  .0. 
,  0 ,  1 )  =  1 )
5351, 52syl 16 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  if ( y  =  .0.  ,  0 ,  1 )  =  1 )
5449, 53eqtrd 2495 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( F `  y )  =  1 )
55 eqeq1 2458 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  .0.  <->  z  =  .0.  ) )
5655ifbid 3922 . . . . . . 7  |-  ( x  =  z  ->  if ( x  =  .0.  ,  0 ,  1 )  =  if ( z  =  .0.  ,  0 ,  1 ) )
5719, 25ifex 3969 . . . . . . 7  |-  if ( z  =  .0.  , 
0 ,  1 )  e.  _V
5856, 15, 57fvmpt 5886 . . . . . 6  |-  ( z  e.  B  ->  ( F `  z )  =  if ( z  =  .0.  ,  0 ,  1 ) )
5936, 58syl 16 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( F `  z )  =  if ( z  =  .0. 
,  0 ,  1 ) )
60 simp3r 1017 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  z  =/=  .0.  )
6160neneqd 2655 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  -.  z  =  .0.  )
62 iffalse 3910 . . . . . 6  |-  ( -.  z  =  .0.  ->  if ( z  =  .0. 
,  0 ,  1 )  =  1 )
6361, 62syl 16 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  if ( z  =  .0.  ,  0 ,  1 )  =  1 )
6459, 63eqtrd 2495 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( F `  z )  =  1 )
6554, 64oveq12d 6221 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( ( F `
 y )  x.  ( F `  z
) )  =  ( 1  x.  1 ) )
6633, 48, 653eqtr4a 2521 . 2  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( F `  ( y  .x.  z
) )  =  ( ( F `  y
)  x.  ( F `
 z ) ) )
67 breq1 4406 . . . . . 6  |-  ( 0  =  if ( ( y ( +g  `  R
) z )  =  .0.  ,  0 ,  1 )  ->  (
0  <_  2  <->  if (
( y ( +g  `  R ) z )  =  .0.  ,  0 ,  1 )  <_ 
2 ) )
68 breq1 4406 . . . . . 6  |-  ( 1  =  if ( ( y ( +g  `  R
) z )  =  .0.  ,  0 ,  1 )  ->  (
1  <_  2  <->  if (
( y ( +g  `  R ) z )  =  .0.  ,  0 ,  1 )  <_ 
2 ) )
69 0le2 10527 . . . . . 6  |-  0  <_  2
70 1le2 10650 . . . . . 6  |-  1  <_  2
7167, 68, 69, 70keephyp 3965 . . . . 5  |-  if ( ( y ( +g  `  R ) z )  =  .0.  ,  0 ,  1 )  <_ 
2
72 df-2 10495 . . . . 5  |-  2  =  ( 1  +  1 )
7371, 72breqtri 4426 . . . 4  |-  if ( ( y ( +g  `  R ) z )  =  .0.  ,  0 ,  1 )  <_ 
( 1  +  1 )
7473a1i 11 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  if ( ( y ( +g  `  R
) z )  =  .0.  ,  0 ,  1 )  <_  (
1  +  1 ) )
75 rnggrp 16783 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
7610, 75syl 16 . . . . . 6  |-  ( ph  ->  R  e.  Grp )
77763ad2ant1 1009 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  R  e.  Grp )
78 eqid 2454 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
793, 78grpcl 15674 . . . . 5  |-  ( ( R  e.  Grp  /\  y  e.  B  /\  z  e.  B )  ->  ( y ( +g  `  R ) z )  e.  B )
8077, 35, 36, 79syl3anc 1219 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( y ( +g  `  R ) z )  e.  B
)
81 eqeq1 2458 . . . . . 6  |-  ( x  =  ( y ( +g  `  R ) z )  ->  (
x  =  .0.  <->  ( y
( +g  `  R ) z )  =  .0.  ) )
8281ifbid 3922 . . . . 5  |-  ( x  =  ( y ( +g  `  R ) z )  ->  if ( x  =  .0.  ,  0 ,  1 )  =  if ( ( y ( +g  `  R
) z )  =  .0.  ,  0 ,  1 ) )
8319, 25ifex 3969 . . . . 5  |-  if ( ( y ( +g  `  R ) z )  =  .0.  ,  0 ,  1 )  e. 
_V
8482, 15, 83fvmpt 5886 . . . 4  |-  ( ( y ( +g  `  R
) z )  e.  B  ->  ( F `  ( y ( +g  `  R ) z ) )  =  if ( ( y ( +g  `  R ) z )  =  .0.  ,  0 ,  1 ) )
8580, 84syl 16 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( F `  ( y ( +g  `  R ) z ) )  =  if ( ( y ( +g  `  R ) z )  =  .0.  ,  0 ,  1 ) )
8654, 64oveq12d 6221 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( ( F `
 y )  +  ( F `  z
) )  =  ( 1  +  1 ) )
8774, 85, 863brtr4d 4433 . 2  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( F `  ( y ( +g  `  R ) z ) )  <_  ( ( F `  y )  +  ( F `  z ) ) )
882, 4, 5, 7, 9, 10, 16, 21, 31, 66, 87isabvd 17038 1  |-  ( ph  ->  F  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   ifcif 3902   class class class wbr 4403    |-> cmpt 4461   ` cfv 5529  (class class class)co 6203   RRcr 9396   0cc0 9397   1c1 9398    + caddc 9400    x. cmul 9402    < clt 9533    <_ cle 9534   2c2 10486   Basecbs 14296   +g cplusg 14361   .rcmulr 14362   0gc0g 14501   Grpcgrp 15533   Ringcrg 16778  AbsValcabv 17034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-recs 6945  df-rdg 6979  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-2 10495  df-ico 11421  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-plusg 14374  df-0g 14503  df-mnd 15538  df-grp 15668  df-minusg 15669  df-mgp 16724  df-rng 16780  df-abv 17035
This theorem is referenced by:  abvtriv  17059  abvn0b  17507
  Copyright terms: Public domain W3C validator