MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvres Structured version   Visualization version   GIF version

Theorem abvres 18662
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
abvres.a 𝐴 = (AbsVal‘𝑅)
abvres.s 𝑆 = (𝑅s 𝐶)
abvres.b 𝐵 = (AbsVal‘𝑆)
Assertion
Ref Expression
abvres ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem abvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvres.b . . 3 𝐵 = (AbsVal‘𝑆)
21a1i 11 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐵 = (AbsVal‘𝑆))
3 abvres.s . . . 4 𝑆 = (𝑅s 𝐶)
43subrgbas 18612 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 = (Base‘𝑆))
54adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 = (Base‘𝑆))
6 eqid 2610 . . . 4 (+g𝑅) = (+g𝑅)
73, 6ressplusg 15818 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
87adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (+g𝑅) = (+g𝑆))
9 eqid 2610 . . . 4 (.r𝑅) = (.r𝑅)
103, 9ressmulr 15829 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1110adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (.r𝑅) = (.r𝑆))
12 subrgsubg 18609 . . . 4 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ∈ (SubGrp‘𝑅))
1312adantl 481 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubGrp‘𝑅))
14 eqid 2610 . . . 4 (0g𝑅) = (0g𝑅)
153, 14subg0 17423 . . 3 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝑆))
1613, 15syl 17 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (0g𝑅) = (0g𝑆))
173subrgring 18606 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
1817adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
19 abvres.a . . . 4 𝐴 = (AbsVal‘𝑅)
20 eqid 2610 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2119, 20abvf 18646 . . 3 (𝐹𝐴𝐹:(Base‘𝑅)⟶ℝ)
2220subrgss 18604 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ⊆ (Base‘𝑅))
23 fssres 5983 . . 3 ((𝐹:(Base‘𝑅)⟶ℝ ∧ 𝐶 ⊆ (Base‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2421, 22, 23syl2an 493 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2514subg0cl 17425 . . . 4 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝐶)
26 fvres 6117 . . . 4 ((0g𝑅) ∈ 𝐶 → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2713, 25, 263syl 18 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2819, 14abv0 18654 . . . 4 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
2928adantr 480 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
3027, 29eqtrd 2644 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = 0)
31 simp1l 1078 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝐹𝐴)
3222adantl 481 . . . . . 6 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
3332sselda 3568 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶) → 𝑥 ∈ (Base‘𝑅))
34333adant3 1074 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ∈ (Base‘𝑅))
35 simp3 1056 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ≠ (0g𝑅))
3619, 20, 14abvgt0 18651 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
3731, 34, 35, 36syl3anc 1318 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
38 fvres 6117 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
39383ad2ant2 1076 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
4037, 39breqtrrd 4611 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < ((𝐹𝐶)‘𝑥))
41 simp1l 1078 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐹𝐴)
42 simp1r 1079 . . . . . 6 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ∈ (SubRing‘𝑅))
4342, 22syl 17 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ⊆ (Base‘𝑅))
44 simp2l 1080 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥𝐶)
4543, 44sseldd 3569 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥 ∈ (Base‘𝑅))
46 simp3l 1082 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦𝐶)
4743, 46sseldd 3569 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦 ∈ (Base‘𝑅))
4819, 20, 9abvmul 18652 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
4941, 45, 47, 48syl3anc 1318 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
509subrgmcl 18615 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
5142, 44, 46, 50syl3anc 1318 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
52 fvres 6117 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ 𝐶 → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
5351, 52syl 17 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
5444, 38syl 17 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
55 fvres 6117 . . . . 5 (𝑦𝐶 → ((𝐹𝐶)‘𝑦) = (𝐹𝑦))
5646, 55syl 17 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑦) = (𝐹𝑦))
5754, 56oveq12d 6567 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
5849, 53, 573eqtr4d 2654 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)))
5919, 20, 6abvtri 18653 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
6041, 45, 47, 59syl3anc 1318 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
616subrgacl 18614 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
6242, 44, 46, 61syl3anc 1318 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
63 fvres 6117 . . . 4 ((𝑥(+g𝑅)𝑦) ∈ 𝐶 → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
6462, 63syl 17 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
6554, 56oveq12d 6567 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
6660, 64, 653brtr4d 4615 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) ≤ (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)))
672, 5, 8, 11, 16, 18, 24, 30, 40, 58, 66isabvd 18643 1 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wss 3540   class class class wbr 4583  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  Basecbs 15695  s cress 15696  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  SubGrpcsubg 17411  Ringcrg 18370  SubRingcsubrg 18599  AbsValcabv 18639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ico 12052  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-mgp 18313  df-ring 18372  df-subrg 18601  df-abv 18640
This theorem is referenced by:  subrgnrg  22287  qabsabv  25118
  Copyright terms: Public domain W3C validator