MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv0 Structured version   Visualization version   GIF version

Theorem abv0 18654
Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abv0.z 0 = (0g𝑅)
Assertion
Ref Expression
abv0 (𝐹𝐴 → (𝐹0 ) = 0)

Proof of Theorem abv0
StepHypRef Expression
1 abv0.a . . . 4 𝐴 = (AbsVal‘𝑅)
21abvrcl 18644 . . 3 (𝐹𝐴𝑅 ∈ Ring)
3 eqid 2610 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4 abv0.z . . . 4 0 = (0g𝑅)
53, 4ring0cl 18392 . . 3 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
62, 5syl 17 . 2 (𝐹𝐴0 ∈ (Base‘𝑅))
7 eqid 2610 . . 3 0 = 0
81, 3, 4abveq0 18649 . . 3 ((𝐹𝐴0 ∈ (Base‘𝑅)) → ((𝐹0 ) = 0 ↔ 0 = 0 ))
97, 8mpbiri 247 . 2 ((𝐹𝐴0 ∈ (Base‘𝑅)) → (𝐹0 ) = 0)
106, 9mpdan 699 1 (𝐹𝐴 → (𝐹0 ) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  0cc0 9815  Basecbs 15695  0gc0g 15923  Ringcrg 18370  AbsValcabv 18639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ring 18372  df-abv 18640
This theorem is referenced by:  abvdom  18661  abvres  18662  abvcxp  25104  qabvle  25114  ostthlem1  25116  ostth2lem2  25123  ostth3  25127
  Copyright terms: Public domain W3C validator