Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem3 Structured version   Visualization version   GIF version

Theorem abelthlem3 23991
 Description: Lemma for abelth 23999. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
Assertion
Ref Expression
abelthlem3 ((𝜑𝑋𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
Distinct variable groups:   𝑧,𝑛,𝑀   𝑛,𝑋,𝑧   𝐴,𝑛,𝑧   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)

Proof of Theorem abelthlem3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 abelth.1 . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
2 abelth.2 . . . . . . 7 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
3 abelth.3 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
4 abelth.4 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
5 abelth.5 . . . . . . 7 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
61, 2, 3, 4, 5abelthlem2 23990 . . . . . 6 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
76simprd 478 . . . . 5 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
8 ssundif 4004 . . . . 5 (𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
97, 8sylibr 223 . . . 4 (𝜑𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
109sselda 3568 . . 3 ((𝜑𝑋𝑆) → 𝑋 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
11 elun 3715 . . 3 (𝑋 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ − ))1)))
1210, 11sylib 207 . 2 ((𝜑𝑋𝑆) → (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ − ))1)))
131feqmptd 6159 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
141ffvelrnda 6267 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
1514mulid1d 9936 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
1615mpteq2dva 4672 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
1713, 16eqtr4d 2647 . . . . . 6 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
18 elsni 4142 . . . . . . . . . . 11 (𝑋 ∈ {1} → 𝑋 = 1)
1918oveq1d 6564 . . . . . . . . . 10 (𝑋 ∈ {1} → (𝑋𝑛) = (1↑𝑛))
20 nn0z 11277 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
21 1exp 12751 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
2220, 21syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
2319, 22sylan9eq 2664 . . . . . . . . 9 ((𝑋 ∈ {1} ∧ 𝑛 ∈ ℕ0) → (𝑋𝑛) = 1)
2423oveq2d 6565 . . . . . . . 8 ((𝑋 ∈ {1} ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = ((𝐴𝑛) · 1))
2524mpteq2dva 4672 . . . . . . 7 (𝑋 ∈ {1} → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
2625eqcomd 2616 . . . . . 6 (𝑋 ∈ {1} → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
2717, 26sylan9eq 2664 . . . . 5 ((𝜑𝑋 ∈ {1}) → 𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
2827seqeq3d 12671 . . . 4 ((𝜑𝑋 ∈ {1}) → seq0( + , 𝐴) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))))
292adantr 480 . . . 4 ((𝜑𝑋 ∈ {1}) → seq0( + , 𝐴) ∈ dom ⇝ )
3028, 29eqeltrrd 2689 . . 3 ((𝜑𝑋 ∈ {1}) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
31 cnxmet 22386 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
32 0cn 9911 . . . . . . . 8 0 ∈ ℂ
33 1re 9918 . . . . . . . . 9 1 ∈ ℝ
3433rexri 9976 . . . . . . . 8 1 ∈ ℝ*
35 blssm 22033 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
3631, 32, 34, 35mp3an 1416 . . . . . . 7 (0(ball‘(abs ∘ − ))1) ⊆ ℂ
37 simpr 476 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 𝑋 ∈ (0(ball‘(abs ∘ − ))1))
3836, 37sseldi 3566 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 𝑋 ∈ ℂ)
39 oveq1 6556 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧𝑛) = (𝑋𝑛))
4039oveq2d 6565 . . . . . . . 8 (𝑧 = 𝑋 → ((𝐴𝑛) · (𝑧𝑛)) = ((𝐴𝑛) · (𝑋𝑛)))
4140mpteq2dv 4673 . . . . . . 7 (𝑧 = 𝑋 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
42 eqid 2610 . . . . . . 7 (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))
43 nn0ex 11175 . . . . . . . 8 0 ∈ V
4443mptex 6390 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))) ∈ V
4541, 42, 44fvmpt 6191 . . . . . 6 (𝑋 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑋) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
4638, 45syl 17 . . . . 5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑋) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛))))
4746seqeq3d 12671 . . . 4 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑋)) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))))
481adantr 480 . . . . 5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 𝐴:ℕ0⟶ℂ)
49 eqid 2610 . . . . 5 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
5038abscld 14023 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘𝑋) ∈ ℝ)
5150rexrd 9968 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘𝑋) ∈ ℝ*)
52 rexr 9964 . . . . . . 7 (1 ∈ ℝ → 1 ∈ ℝ*)
5333, 52mp1i 13 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 1 ∈ ℝ*)
54 iccssxr 12127 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
5542, 48, 49radcnvcl 23975 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
5654, 55sseldi 3566 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
57 eqid 2610 . . . . . . . . . 10 (abs ∘ − ) = (abs ∘ − )
5857cnmetdval 22384 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
5938, 32, 58sylancl 693 . . . . . . . 8 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
6038subid1d 10260 . . . . . . . . 9 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋 − 0) = 𝑋)
6160fveq2d 6107 . . . . . . . 8 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘(𝑋 − 0)) = (abs‘𝑋))
6259, 61eqtrd 2644 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋(abs ∘ − )0) = (abs‘𝑋))
63 elbl3 22007 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
6431, 34, 63mpanl12 714 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
6532, 38, 64sylancr 694 . . . . . . . 8 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
6637, 65mpbid 221 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (𝑋(abs ∘ − )0) < 1)
6762, 66eqbrtrrd 4607 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘𝑋) < 1)
681, 2abelthlem1 23989 . . . . . . 7 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6968adantr 480 . . . . . 6 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
7051, 53, 56, 67, 69xrltletrd 11868 . . . . 5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → (abs‘𝑋) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
7142, 48, 49, 38, 70radcnvlt2 23977 . . . 4 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑋)) ∈ dom ⇝ )
7247, 71eqeltrrd 2689 . . 3 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
7330, 72jaodan 822 . 2 ((𝜑 ∧ (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ − ))1))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
7412, 73syldan 486 1 ((𝜑𝑋𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {crab 2900   ∖ cdif 3537   ∪ cun 3538   ⊆ wss 3540  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  supcsup 8229  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145  ℕ0cn0 11169  ℤcz 11254  [,]cicc 12049  seqcseq 12663  ↑cexp 12722  abscabs 13822   ⇝ cli 14063  ∞Metcxmt 19552  ballcbl 19554 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562 This theorem is referenced by:  abelthlem4  23992  abelthlem9  23998
 Copyright terms: Public domain W3C validator