Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abelthlem4 | Structured version Visualization version GIF version |
Description: Lemma for abelth 23999. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
abelth.3 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
abelth.4 | ⊢ (𝜑 → 0 ≤ 𝑀) |
abelth.5 | ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
abelth.6 | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
Ref | Expression |
---|---|
abelthlem4 | ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 11598 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 11266 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℤ) | |
3 | fveq2 6103 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐴‘𝑚) = (𝐴‘𝑛)) | |
4 | oveq2 6557 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑥↑𝑚) = (𝑥↑𝑛)) | |
5 | 3, 4 | oveq12d 6567 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
6 | eqid 2610 | . . . . 5 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) | |
7 | ovex 6577 | . . . . 5 ⊢ ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6191 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
9 | 8 | adantl 481 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))‘𝑛) = ((𝐴‘𝑛) · (𝑥↑𝑛))) |
10 | abelth.1 | . . . . . 6 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
12 | 11 | ffvelrnda 6267 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
13 | abelth.5 | . . . . . . . 8 ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | |
14 | ssrab2 3650 | . . . . . . . 8 ⊢ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⊆ ℂ | |
15 | 13, 14 | eqsstri 3598 | . . . . . . 7 ⊢ 𝑆 ⊆ ℂ |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
17 | 16 | sselda 3568 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℂ) |
18 | expcl 12740 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) | |
19 | 17, 18 | sylan 487 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) ∈ ℂ) |
20 | 12, 19 | mulcld 9939 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
21 | abelth.2 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) | |
22 | abelth.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
23 | abelth.4 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑀) | |
24 | 10, 21, 22, 23, 13 | abelthlem3 23991 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))) ∈ dom ⇝ ) |
25 | 1, 2, 9, 20, 24 | isumcl 14334 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) ∈ ℂ) |
26 | abelth.6 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) | |
27 | 25, 26 | fmptd 6292 | 1 ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 ⊆ wss 3540 class class class wbr 4583 ↦ cmpt 4643 dom cdm 5038 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 ℝcr 9814 0cc0 9815 1c1 9816 + caddc 9818 · cmul 9820 ≤ cle 9954 − cmin 10145 ℕ0cn0 11169 seqcseq 12663 ↑cexp 12722 abscabs 13822 ⇝ cli 14063 Σcsu 14264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-xadd 11823 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-limsup 14050 df-clim 14067 df-rlim 14068 df-sum 14265 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 |
This theorem is referenced by: abelthlem7 23996 abelthlem8 23997 abelthlem9 23998 abelth 23999 |
Copyright terms: Public domain | W3C validator |