MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem4 Structured version   Unicode version

Theorem abelthlem4 22955
Description: Lemma for abelth 22962. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq 0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
abelth.6  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
Assertion
Ref Expression
abelthlem4  |-  ( ph  ->  F : S --> CC )
Distinct variable groups:    x, n, z, M    A, n, x, z    ph, n, x    S, n, x
Allowed substitution hints:    ph( z)    S( z)    F( x, z, n)

Proof of Theorem abelthlem4
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11140 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 10897 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  0  e.  ZZ )
3 fveq2 5872 . . . . . 6  |-  ( m  =  n  ->  ( A `  m )  =  ( A `  n ) )
4 oveq2 6304 . . . . . 6  |-  ( m  =  n  ->  (
x ^ m )  =  ( x ^
n ) )
53, 4oveq12d 6314 . . . . 5  |-  ( m  =  n  ->  (
( A `  m
)  x.  ( x ^ m ) )  =  ( ( A `
 n )  x.  ( x ^ n
) ) )
6 eqid 2457 . . . . 5  |-  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( x ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( x ^ m
) ) )
7 ovex 6324 . . . . 5  |-  ( ( A `  n )  x.  ( x ^
n ) )  e. 
_V
85, 6, 7fvmpt 5956 . . . 4  |-  ( n  e.  NN0  ->  ( ( m  e.  NN0  |->  ( ( A `  m )  x.  ( x ^
m ) ) ) `
 n )  =  ( ( A `  n )  x.  (
x ^ n ) ) )
98adantl 466 . . 3  |-  ( ( ( ph  /\  x  e.  S )  /\  n  e.  NN0 )  ->  (
( m  e.  NN0  |->  ( ( A `  m )  x.  (
x ^ m ) ) ) `  n
)  =  ( ( A `  n )  x.  ( x ^
n ) ) )
10 abelth.1 . . . . . 6  |-  ( ph  ->  A : NN0 --> CC )
1110adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  A : NN0 --> CC )
1211ffvelrnda 6032 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  n  e.  NN0 )  ->  ( A `  n )  e.  CC )
13 abelth.5 . . . . . . . 8  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
14 ssrab2 3581 . . . . . . . 8  |-  { z  e.  CC  |  ( abs `  ( 1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }  C_  CC
1513, 14eqsstri 3529 . . . . . . 7  |-  S  C_  CC
1615a1i 11 . . . . . 6  |-  ( ph  ->  S  C_  CC )
1716sselda 3499 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  CC )
18 expcl 12187 . . . . 5  |-  ( ( x  e.  CC  /\  n  e.  NN0 )  -> 
( x ^ n
)  e.  CC )
1917, 18sylan 471 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  n  e.  NN0 )  ->  (
x ^ n )  e.  CC )
2012, 19mulcld 9633 . . 3  |-  ( ( ( ph  /\  x  e.  S )  /\  n  e.  NN0 )  ->  (
( A `  n
)  x.  ( x ^ n ) )  e.  CC )
21 abelth.2 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  A )  e. 
dom 
~~>  )
22 abelth.3 . . . 4  |-  ( ph  ->  M  e.  RR )
23 abelth.4 . . . 4  |-  ( ph  ->  0  <_  M )
2410, 21, 22, 23, 13abelthlem3 22954 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  seq 0 (  +  , 
( m  e.  NN0  |->  ( ( A `  m )  x.  (
x ^ m ) ) ) )  e. 
dom 
~~>  )
251, 2, 9, 20, 24isumcl 13588 . 2  |-  ( (
ph  /\  x  e.  S )  ->  sum_ n  e.  NN0  ( ( A `
 n )  x.  ( x ^ n
) )  e.  CC )
26 abelth.6 . 2  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
2725, 26fmptd 6056 1  |-  ( ph  ->  F : S --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   {crab 2811    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008   -->wf 5590   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    <_ cle 9646    - cmin 9824   NN0cn0 10816    seqcseq 12110   ^cexp 12169   abscabs 13079    ~~> cli 13319   sum_csu 13520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-xadd 11344  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-limsup 13306  df-clim 13323  df-rlim 13324  df-sum 13521  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541
This theorem is referenced by:  abelthlem7  22959  abelthlem8  22960  abelthlem9  22961  abelth  22962
  Copyright terms: Public domain W3C validator